NILPOTENT ORBITS, NORMALITY, AND HAMILTONIAN GROUP-ACTIONS

被引:18
作者
BRYLINSKI, R [1 ]
KOSTANT, B [1 ]
机构
[1] MIT,DEPT MATH,CAMBRIDGE,MA 02139
关键词
D O I
10.1090/S0273-0979-1992-00271-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a G-covering of a nilpotent orbit in g where G is a complex semisimple Lie group and g = Lie(G). We prove that under Poisson bracket the space R[21 of homogeneous functions on M of degree 2 is the unique maximal semisimple Lie subalgebra of R = R(M) containing g. The action of g' congruent-to R[2] exponentiates to an action of the corresponding Lie group G' on a G'-cover M' of a nilpotent orbit in g' such that M is open dense in M'. We determine all such pairs (g subset-of g') .
引用
收藏
页码:269 / 275
页数:7
相关论文
共 8 条
[1]   AUTOMORPHISMS AND DEFORMATIONS OF BOREL MANIFOLDS [J].
DEMAZURE, M .
INVENTIONES MATHEMATICAE, 1977, 39 (02) :179-186
[2]  
KOSTANT B, 1990, OPERATOR ALGEBRAS UN, P85
[3]   ON THE GEOMETRY OF CONJUGACY CLASSES IN CLASSICAL-GROUPS [J].
KRAFT, H ;
PROCESI, C .
COMMENTARII MATHEMATICI HELVETICI, 1982, 57 (04) :539-602
[4]   PRIMITIVE-IDEALS AND NILPOTENT ORBITS IN TYPE-G2 [J].
LEVASSEUR, T ;
SMITH, SP .
JOURNAL OF ALGEBRA, 1988, 114 (01) :81-105
[5]  
MCGOVERN WM, 1990, OPERATOR ALGEBRAS UN, P397
[6]  
VOGAN DA, 1986, CMS C P, V5, P281
[7]  
VOGAN DA, 1988, P S PURE MATH, V48, P35
[8]   FINITE ENDOMORPHISMS OF WHITTAKER MODULES [J].
ZAHID, A .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1989, 117 (04) :451-477