EXPONENTIALLY SMALL GROWTH PROBABILITIES IN DIFFUSION-LIMITED AGGREGATION

被引:19
作者
TRUNFIO, PA
ALSTROM, P
机构
[1] Center for Polymer Studies, Boston University, Boston
来源
PHYSICAL REVIEW B | 1990年 / 41卷 / 01期
关键词
D O I
10.1103/PhysRevB.41.896
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present numerical results that suggest the existence of exponentially small growth probabilities in diffusion-limited aggregation (DLA). Based on this observation, we provide a novel quantitative analysis for the qth moment Z(q,L) of the growth probability distribution for a DLA cluster of linear size L. We demonstrate that Z(q,L) L1-q for 0<q 1, and show that the finite-size correction becomes substantial below q× L1-D. Furthermore, we find a lower bound for the divergence of Z(q,L) for q<0. Our results consolidate the picture of DLA as a self-organized critical state, and support quantitatively the arguments by Blumenfeld and Aharony concerning the divergence of Z(q,L). © 1990 The American Physical Society.
引用
收藏
页码:896 / 898
页数:3
相关论文
共 10 条
[1]  
Alstrom P., 1988, Random Fluctuations and Pattern Growth: Experiments and Models. Proceedings of the NATO Advanced Study Institute, P340
[2]  
ALSTROM P, UNPUB
[3]   GROWTH PROBABILITY-DISTRIBUTION IN KINETIC AGGREGATION PROCESSES [J].
AMITRANO, C ;
CONIGLIO, A ;
DILIBERTO, F .
PHYSICAL REVIEW LETTERS, 1986, 57 (08) :1016-1019
[4]   BREAKDOWN OF MULTIFRACTAL BEHAVIOR IN DIFFUSION-LIMITED AGGREGATES [J].
BLUMENFELD, R ;
AHARONY, A .
PHYSICAL REVIEW LETTERS, 1989, 62 (25) :2977-2980
[5]   FRACTAL AGGREGATES IN THE COMPLEX-PLANE [J].
BOHR, T ;
CVITANOVIC, P ;
JENSEN, MH .
EUROPHYSICS LETTERS, 1988, 6 (05) :445-450
[6]   SCALING STRUCTURE OF THE SURFACE-LAYER OF DIFFUSION-LIMITED AGGREGATES [J].
HALSEY, TC ;
MEAKIN, P ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1986, 56 (08) :854-857
[7]   SCALING STRUCTURE OF THE GROWTH-PROBABILITY DISTRIBUTION IN DIFFUSION-LIMITED AGGREGATION PROCESSES [J].
HAYAKAWA, Y ;
SATO, S ;
MATSUSHITA, M .
PHYSICAL REVIEW A, 1987, 36 (04) :1963-1966
[8]   PHASE-TRANSITION IN THE MULTIFRACTAL SPECTRUM OF DIFFUSION-LIMITED AGGREGATION [J].
LEE, J ;
STANLEY, HE .
PHYSICAL REVIEW LETTERS, 1988, 61 (26) :2945-2948
[9]   EXACT-ENUMERATION APPROACH TO MULTIFRACTAL STRUCTURE FOR DIFFUSION-LIMITED AGGREGATION [J].
LEE, J ;
ALSTROM, P ;
STANLEY, HE .
PHYSICAL REVIEW A, 1989, 39 (12) :6545-6556
[10]   SCALING PROPERTIES FOR THE SURFACES OF FRACTAL AND NONFRACTAL OBJECTS - AN INFINITE HIERARCHY OF CRITICAL EXPONENTS [J].
MEAKIN, P ;
CONIGLIO, A ;
STANLEY, HE ;
WITTEN, TA .
PHYSICAL REVIEW A, 1986, 34 (04) :3325-3340