SOLUTION OF THE CHANDRASEKHAR H-EQUATION BY NEWTONS METHOD

被引:27
作者
KELLEY, CT
机构
[1] Department of Mathematics, North Carolina State University, Raleigh
关键词
D O I
10.1063/1.524647
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For any value of the parameter c, c≠1, for which a solution to the Chandrasekhar H-equation exists, Newton's method may be used to compute the solution by iteration. © 1980 American Institute of Physics.
引用
收藏
页码:1625 / 1628
页数:4
相关论文
共 13 条
[1]   BANACH-SPACE ANALYSIS OF CHANDRASEKHAR H-EQUATION [J].
BOWDEN, RL ;
ZWEIFEL, PF .
ASTROPHYSICAL JOURNAL, 1976, 210 (01) :178-183
[2]  
BOWDEN RL, 1979, J MATH PHYS, V4, P608
[3]  
Busbridge. L.W., 1960, MATH RAD TRANSFER, V1st ed.
[4]  
CASE KM, 1967, LINEAR TRANSPORT THE
[5]  
Chandrasekhar S., 1950, RAD TRANSFER
[6]  
Crandall M.G., 1971, J FUNCT ANAL, V8, P321, DOI DOI 10.1016/0022-1236(71)90015-2
[7]   CLASS OF NON-LINEAR INTEGRAL-EQUATIONS ARISING IN TRANSPORT-THEORY [J].
HIVELY, GA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1978, 9 (05) :787-792
[8]  
Kantorovich LV, 1964, FUNCTIONAL ANAL NORM
[9]   SOLUTION OF H-EQUATIONS BY ITERATION [J].
KELLEY, CT .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (04) :844-849
[10]   SOME PROBABILITY DISTRIBUTIONS FOR NEUTRON TRANSPORT IN A HALF-SPACE [J].
MULLIKIN, TW .
JOURNAL OF APPLIED PROBABILITY, 1968, 5 (02) :357-&