BEAM PROPAGATION IN A LINEAR OR NONLINEAR LENS-LIKE MEDIUM USING ABCD RAY MATRICES - THE METHOD OF MOMENTS

被引:50
作者
PARE, C
BELANGER, PA
机构
[1] Equipe Laser et Optique Guidée, (COPL) Département de Physique, Université Laval, Sainte-Foy, G1K 7P4, Québec
关键词
D O I
10.1007/BF01588605
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We derive exact expressions for the evolution of the second order moment of the intensity distribution of an arbitrary beam propagating in a nonlinear Kerr medium with a quadratic index profile. The results can be recast in terms of the ABCD matrix formalism after introducing a generalized complex radius of curvature, Q(z). Various definitions of the beam quality factor are introduced. Numerical simulations reveal the interest of this approach.
引用
收藏
页码:S1051 / S1070
页数:20
相关论文
共 34 条
[1]  
Agrawal GP., 2019, NONLINEAR FIBER OPTI, DOI 10.1016/C2018-0-01168-8
[2]  
AKHMANOV SA, 1972, LASER HDB, V2, P1151
[3]   SELF-TRAPPED CYLINDRICAL LASER-BEAMS [J].
ANDERSON, D ;
BONNEDAL, M ;
LISAK, M .
PHYSICS OF FLUIDS, 1979, 22 (09) :1838-1840
[4]  
BASTIAANS MJ, 1989, OPTIK, V82, P173
[5]   SELF-FOCUSING OF GAUSSIAN BEAMS - AN ALTERNATE DERIVATION [J].
BELANGER, PA ;
PARE, C .
APPLIED OPTICS, 1983, 22 (09) :1293-1295
[6]   ON AN EXTREMUM PROPERTY OF GAUSSIAN BEAMS AND GAUSSIAN PULSES [J].
BELANGER, PA ;
MATHIEU, P .
OPTICS COMMUNICATIONS, 1988, 67 (06) :396-398
[7]   BEAM PROPAGATION AND THE ABCD RAY MATRICES [J].
BELANGER, PA .
OPTICS LETTERS, 1991, 16 (04) :196-198
[8]   SELF-TRAPPED BEAMS WITH CYLINDRICAL SYMMETRY [J].
CHEN, YJ .
OPTICS COMMUNICATIONS, 1991, 82 (3-4) :255-259
[9]   SELF-TRAPPING OF OPTICAL BEAMS [J].
CHIAO, RY ;
GARMIRE, E ;
TOWNES, CH .
PHYSICAL REVIEW LETTERS, 1964, 13 (15) :479-&
[10]   BEAM NONPARAXIALITY, FILAMENT FORMATION, AND BEAM BREAKUP IN THE SELF-FOCUSING OF OPTICAL BEAMS [J].
FEIT, MD ;
FLECK, JA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1988, 5 (03) :633-640