CHAOS IN THE 1-2-3 HAMILTONIAN NORMAL-FORM

被引:21
作者
HOVEIJN, I
VERHULST, F
机构
[1] Department of Mathematics, University of Utrecht, 3508 TA Utrecht
来源
PHYSICA D | 1990年 / 44卷 / 03期
关键词
D O I
10.1016/0167-2789(90)90154-H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The normal form of the Hamiltonian 1:2:3 resonance to degree 3 contains seven families of periodic solutions of which one can be complex unstable. Associated with this complex unstable solution is an invariant manifold N on which the dynamics can be characterised completely; one of the ingredients of N is a set of homoclinic orbits. In the normal form to degree 4 the set of homoclinic orbits breaks up, for certain parameter values, into one homoclinic orbit. This enables us to apply Šilnikov-Devaney theory to prove, at this stage numerically, the existence of a horseshoe map in the system with the implication of non-integrability and chaos in the normal form. © 1990.
引用
收藏
页码:397 / 406
页数:10
相关论文
共 11 条
[1]  
ABRAHAM R, 1978, F MECHANICS
[2]  
Arnol'd V. I., 1988, ENCY MATH SCI, V3
[3]  
Arnold V.I., 1988, GEOMETRICAL METHODS
[4]   HOMOCLINIC ORBITS IN HAMILTONIAN SYSTEMS [J].
DEVANEY, RL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1976, 21 (02) :431-438
[5]  
Duistermaat JJ., 1984, ERGOD THEOR DYN SYST, V4, P553, DOI DOI 10.1017/S0143385700002649
[6]  
FEKKEN A, 1986, 317 FREE U AMST PREP
[7]  
Sanders J.A., 1985, AVERAGING METHODS NO, V59
[8]  
VANDERAA E, 1983, CELESTIAL MECH, V13, P163
[9]   ASYMPTOTIC INTEGRABILITY AND PERIODIC-SOLUTIONS OF A HAMILTONIAN SYSTEM IN 1-2-2-RESONANCE [J].
VANDERAA, ELS ;
VERHULST, F .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (05) :890-911
[10]  
VERHULST F, 1990, GEOMETRY ANAL NONLIN