DECAYING EIGENSTATES FOR SIMPLE CHAOTIC SYSTEMS

被引:38
作者
HASEGAWA, HH
SAPHIR, WC
机构
[1] Center for Statistical Mechanics, University of Texas at Austin, Austin
关键词
D O I
10.1016/0375-9601(92)91076-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a new approach to the study of chaotic classical dynamical systems. The method, based on the resolvent formalism of kinetic theory, expresses the time evolution of a probability distribution in terms of exponentially decaying eigenstates of the Perron-Frobenius operator. We illustrate the method by applying it to some simple chaotic maps.
引用
收藏
页码:471 / 476
页数:6
相关论文
共 12 条
[1]   DETERMINATION OF CORRELATION SPECTRA IN CHAOTIC SYSTEMS [J].
CHRISTIANSEN, F ;
PALADIN, G ;
RUGH, HH .
PHYSICAL REVIEW LETTERS, 1990, 65 (17) :2087-2090
[2]  
GASPARD P, DIFFUSION EFFUSION C
[3]   SOME FORMAL ASPECTS OF SUBDYNAMICS [J].
GRECOS, A ;
GUO, T ;
GUO, W .
PHYSICA A, 1975, 80 (05) :421-446
[4]   QUANTUM-MECHANICS AND THE DIRECTION OF TIME [J].
HASEGAWA, H ;
PETROSKY, T ;
PRIGOGINE, I ;
TASAKI, S .
FOUNDATIONS OF PHYSICS, 1991, 21 (03) :263-281
[5]  
HASEGAWA HH, UNPUB
[6]  
HASEGAWA HH, 1992, PHYS LETT A, V162, P477
[7]   TIME-CORRELATION FUNCTIONS OF ONE-DIMENSIONAL TRANSFORMATIONS [J].
MORI, H ;
SO, BC ;
OSE, T .
PROGRESS OF THEORETICAL PHYSICS, 1981, 66 (04) :1266-1283
[8]   QUANTUM-THEORY OF NONINTEGRABLE SYSTEMS [J].
PETROSKY, T ;
PRIGOGINE, I ;
TASAKI, S .
PHYSICA A, 1991, 173 (1-2) :175-242
[9]   SUBDYNAMICS AND NONINTEGRABLE SYSTEMS [J].
PETROSKY, TY ;
HASEGAWA, H .
PHYSICA A, 1989, 160 (03) :351-385
[10]  
PRIGOGINE I, 1973, CHEM SCRIPTA, V4, P5