SUSCEPTIBILITY OF 2-DIMENSIONAL, 3-DIMENSIONAL, AND 4-DIMENSIONAL SPIN-GLASSES IN A MAGNETIC-FIELD

被引:34
作者
GRANNAN, ER
HETZEL, RE
机构
[1] ATandT Bell Laboratories, Murray Hill
关键词
D O I
10.1103/PhysRevLett.67.907
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Through Monte Carlo simulations we have studied the spin-glass susceptibility of two-, three-, and four-dimensional spin glasses in a magnetic field. We find that in four dimensions curves of constant susceptibility curve upward as the temperature is lowered, in a manner indicative of the presence of a de Almeida-Thouless (AT) line of phase transitions. In three dimensions the curves of constant susceptibility also appear to curve up, although not as sharply. In contrast, in two dimensions we do not see indications of an AT line.
引用
收藏
页码:907 / 910
页数:4
相关论文
共 18 条
[1]   NUMERICAL-STUDIES OF ISING SPIN-GLASSES IN 2, 3, AND 4 DIMENSIONS [J].
BHATT, RN ;
YOUNG, AP .
PHYSICAL REVIEW B, 1988, 37 (10) :5606-5614
[2]  
BRAY AJ, 1987, GLASSY DYNAMICS OPTI
[3]   3D ISING SPIN-GLASSES IN A MAGNETIC-FIELD AND MEAN-FIELD THEORY [J].
CARACCIOLO, S ;
PARISI, G ;
PATARNELLO, S ;
SOURLAS, N .
EUROPHYSICS LETTERS, 1990, 11 (08) :783-789
[4]   LOW-TEMPERATURE BEHAVIOR OF 3-D SPIN-GLASSES IN A MAGNETIC-FIELD [J].
CARACCIOLO, S ;
PARISI, G ;
PATARNELLO, S ;
SOURLAS, N .
JOURNAL DE PHYSIQUE, 1990, 51 (17) :1877-1895
[5]  
CARACCIOLO S, 1991, J PHYS I, V1, P627, DOI 10.1051/jp1:1991158
[6]   STABILITY OF SHERRINGTON-KIRKPATRICK SOLUTION OF A SPIN GLASS MODEL [J].
DEALMEIDA, JRL ;
THOULESS, DJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (05) :983-990
[7]   ORDERED PHASE OF SHORT-RANGE ISING SPIN-GLASSES [J].
FISHER, DS ;
HUSE, DA .
PHYSICAL REVIEW LETTERS, 1986, 56 (15) :1601-1604
[8]   EQUILIBRIUM BEHAVIOR OF THE SPIN-GLASS ORDERED PHASE [J].
FISHER, DS ;
HUSE, DA .
PHYSICAL REVIEW B, 1988, 38 (01) :386-411
[9]   LOW-TEMPERATURE PHASE OF THE ISING SPIN-GLASS ON A HYPERCUBIC LATTICE [J].
GEORGES, A ;
MEZARD, M ;
YEDIDIA, JS .
PHYSICAL REVIEW LETTERS, 1990, 64 (24) :2937-2940
[10]  
HUSE DA, 1991, J PHYS I, V1, P621, DOI 10.1051/jp1:1991157