HIERARCHICAL NEURAL NETWORKS FOR TIME-SERIES ANALYSIS AND CONTROL

被引:7
作者
FROHLINGHAUS, T
WEICHERT, A
RUJAN, P
机构
[1] CARL VON OSSIETZKY UNIV,FACHBEREICH INFORMAT 10,D-26111 OLDENBURG,GERMANY
[2] CARL VON OSSIETZKY UNIV,FACHBEREICH PHYS 8,D-26111 OLDENBURG,GERMANY
关键词
D O I
10.1088/0954-898X/5/1/007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A hierarchical network of neurons with local receptive fields is constructed by using a mixture of clustering and supervised learning strategies. The network's performance is enhanced by built-in importance sampling and by its multiscale organization in both time and phase space domains. The method is tested on predicting chaotic time-series and on balancing a physical pendulum.
引用
收藏
页码:101 / 116
页数:16
相关论文
共 27 条
[1]  
[Anonymous], 1964, SUNSPOTS
[2]   MULTIDIMENSIONAL BINARY SEARCH TREES USED FOR ASSOCIATIVE SEARCHING [J].
BENTLEY, JL .
COMMUNICATIONS OF THE ACM, 1975, 18 (09) :509-517
[3]  
BREIMEAN L, 1984, CLASSIFICATION REGRE
[4]   THE LAPLACIAN PYRAMID AS A COMPACT IMAGE CODE [J].
BURT, PJ ;
ADELSON, EH .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1983, 31 (04) :532-540
[5]  
Daubechies I., 1992, 10 LECT WAVELETS, DOI 10.1137/1.9781611970104
[6]  
Duda R. O., 1973, PATTERN CLASSIFICATI, V3
[7]  
FARMER JD, 1982, PHYSICA D, V4, P366, DOI 10.1016/0167-2789(82)90042-2
[8]   PREDICTING CHAOTIC TIME-SERIES [J].
FARMER, JD ;
SIDOROWICH, JJ .
PHYSICAL REVIEW LETTERS, 1987, 59 (08) :845-848
[9]  
FROHLINGHAUS T, 1993, THESIS C VONOSSIETZK
[10]  
Golub G. H., 1989, MATRIX COMPUTATIONS