QUANTUM PHASE ANGLES AND SU(INFINITY)

被引:14
作者
ELLINAS, D
机构
[1] Department of Theoretical Physics, University of Helsinki, Helsinki, SF-00170
关键词
D O I
10.1080/09500349114552541
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The polar decomposition of the su(2) algebra leads to unitary phase operators which do not close to an algebra with the number operator. It is shown that phase and number operators can be embedded into a larger su(2j + 1) algebra with trigonometric structure constants. In the contraction limit where we pass from the su(2) to the oscillator algebra, the embedding algebra for the phase operators becomes su(infinity). The coherent states realization of the su(infinity) algebra and its relation to the q-deformed oscillator algebra is briefly discussed.
引用
收藏
页码:2393 / 2399
页数:7
相关论文
共 31 条
[1]   ON THE HERMITIAN OPTICAL-PHASE OPERATOR [J].
BARNETT, SM ;
PEGG, DT .
JOURNAL OF MODERN OPTICS, 1989, 36 (01) :7-19
[2]  
BIEDENHARN LC, 1981, ENCY MATH ITS APPLIC, P319
[3]   PHASE AND ANGLE VARIABLES IN QUANTUM MECHANICS [J].
CARRUTHERS, P ;
NIETO, MM .
REVIEWS OF MODERN PHYSICS, 1968, 40 (02) :411-+
[4]   QUANTUM ALGEBRA AS THE DYNAMIC SYMMETRY OF THE DEFORMED JAYNES-CUMMINGS MODEL [J].
CHAICHIAN, M ;
ELLINAS, D ;
KULISH, P .
PHYSICAL REVIEW LETTERS, 1990, 65 (08) :980-983
[5]   ON THE POLAR DECOMPOSITION OF THE QUANTUM SU(2) ALGEBRA [J].
CHAICHIAN, M ;
ELLINAS, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (07) :L291-L296
[7]   PHASE OPERATORS VIA GROUP CONTRACTION [J].
ELLINAS, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (01) :135-141
[8]  
ELLINAS D, IN PRESS PHYS REV A
[9]   TRIGONOMETRIC STRUCTURE CONSTANTS FOR NEW INFINITE-DIMENSIONAL ALGEBRAS [J].
FAIRLIE, DB ;
FLETCHER, P ;
ZACHOS, CK .
PHYSICS LETTERS B, 1989, 218 (02) :203-206
[10]   INFINITE-DIMENSIONAL ALGEBRAS, SINE BRACKETS, AND SU(INFINITY) [J].
FAIRLIE, DB ;
ZACHOS, CK .
PHYSICS LETTERS B, 1989, 224 (1-2) :101-107