SPECTRAL CONVERGENCE OF MULTIQUADRIC INTERPOLATION

被引:69
作者
BUHMANN, M
DYN, N
机构
[1] UNIV CAMBRIDGE,DEPT APPL MATH & THEORET PHYS,CAMBRIDGE CB3 9EW,ENGLAND
[2] TEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,IL-69978 TEL AVIV,ISRAEL
关键词
D O I
10.1017/S0013091500018411
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider interpolants on h . Z(n) from the closure of the space spanned by translates of the function (\\.\\2 + 1 )beta/2 (beta>-n and n.t an e,en nonnegative integer) along h . Z(n). We show that these interpolants approximate a function, whose Fourier transform satisfies certain asymptotic conditions, up to an error of order h(p), on any compact domain in R(n), where p is only restricted by the smoothness of the function.
引用
收藏
页码:319 / 333
页数:15
相关论文
共 15 条