GROUP-THEORY OF HYPERBOLIC CIRCLE PACKINGS

被引:13
作者
BULLETT, S [1 ]
MANTICA, G [1 ]
机构
[1] CENS,SERV PHYS,F-91191 GIF SUR YVETTE,FRANCE
关键词
D O I
10.1088/0951-7715/5/5/004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Circle packings can be generated by combining hyperbolic and spherical (or Euclidean) tessellation groups. These packings are non-osculatory, and yet complete: an area of full measure is covered by a set of non-overlapping, non-tangent discs. We provide the general group-theoretical framework associated to an efficient, geometrically inspired, construction of these packings. We classify the different structures that can be obtained in this way, and we investigate their fractal properties.
引用
收藏
页码:1085 / 1109
页数:25
相关论文
共 19 条
[2]  
Beardon A. F., 1983, GEOMETRY DISCRETE GR, V91
[3]   LIMIT POINTS OF KLEINIAN GROUPS AND FINITE SIDED FUNDAMENTAL POLYHEDRA [J].
BEARDON, AF ;
MASKIT, B .
ACTA MATHEMATICA, 1974, 132 (1-2) :1-12
[4]  
Berger M., 1987, GEOMETRY, V1
[5]  
Berger M., 1987, GEOMETRY, VII
[6]   GENERALIZED APOLLONIAN PACKINGS [J].
BESSIS, D ;
DEMKO, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 134 (02) :293-319
[7]   TORSION-FREE DISCRETE SUBGROUPS OF PSL(2,C) WITH COMPACT ORBIT SPACE [J].
BEST, LA .
CANADIAN JOURNAL OF MATHEMATICS, 1971, 23 (03) :451-&
[8]   NEW CLASS OF INFINITE SPHERE PACKINGS [J].
BOYD, DW .
PACIFIC JOURNAL OF MATHEMATICS, 1974, 50 (02) :383-398
[9]   EXPONENT OF AN OSCULATORY PACKING [J].
BOYD, DW .
CANADIAN JOURNAL OF MATHEMATICS, 1971, 23 (02) :355-&
[10]  
COXETER HSM, 1981, INTRO GEOMETRY