SIMPLE CONDITIONS FOR THE CONVERGENCE OF THE GIBBS SAMPLER AND METROPOLIS-HASTINGS ALGORITHMS

被引:190
作者
ROBERTS, GO
SMITH, AFM
机构
[1] UNIV CAMBRIDGE,CAMBRIDGE,ENGLAND
[2] UNIV LONDON IMPERIAL COLL SCI TECHNOL & MED,LONDON SW7 2AZ,ENGLAND
关键词
MARKOV CHAIN MONTE-CARLO; GIBBS SAMPLER; METROPOLIS-HASTINGS ALGORITHM; STATISTICAL COMPUTATION; ERGODICITY; LOWER SEMICONTINUITY;
D O I
10.1016/0304-4149(94)90134-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Markov chain Monte Carlo (MCMC) simulation methods are being used increasingly in statistical computation to explore and estimate features of likelihood surfaces and Bayesian posterior distributions. This paper presents simple conditions which ensure the convergence of two widely used versions of MCMC, the Gibbs sampler and Metropolis-Hastings algorithms.
引用
收藏
页码:207 / 216
页数:10
相关论文
共 14 条
[1]  
BESAG J, 1993, J ROY STAT SOC B MET, V55, P25
[2]   ASYMPTOTIC-BEHAVIOR OF THE GIBBS SAMPLER [J].
CHAN, KS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :320-326
[3]  
GELFAND AE, 1990, J AM STAT ASSOC, V85, P98
[4]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[5]  
GEYER CJ, 1993, STAT SCI, V7, P457
[6]  
GIDAS B, 1992, TRENDS CONT PROBABIL
[7]  
GILKS WR, 1993, J R STAT SOC B, V55, P39
[8]   MONTE-CARLO SAMPLING METHODS USING MARKOV CHAINS AND THEIR APPLICATIONS [J].
HASTINGS, WK .
BIOMETRIKA, 1970, 57 (01) :97-&
[9]   EQUATION OF STATE CALCULATIONS BY FAST COMPUTING MACHINES [J].
METROPOLIS, N ;
ROSENBLUTH, AW ;
ROSENBLUTH, MN ;
TELLER, AH ;
TELLER, E .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (06) :1087-1092
[10]  
ROBERTS GO, 1994, J ROY STATIST SOC B, V56