STATISTICAL PROPERTIES OF THE ZEROS OF ZETA-FUNCTIONS - BEYOND THE RIEMANN CASE

被引:11
作者
BOGOMOLNY, E [1 ]
LEBOEUF, P [1 ]
机构
[1] UNIV PARIS 06,CNRS,DIV PHYS THEOR,F-91406 ORSAY,FRANCE
关键词
D O I
10.1088/0951-7715/7/4/004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the statistical distribution of the zeros of Dirichlet L-functions both analytically and numerically. Using the Hardy-Littlewood conjecture about the distribution of primes we show that the two-point correlation function of these zeros coincides with that for eigenvalues of the Gaussian unitary ensemble of random matrices, and that the distributions of zeros of different L-functions are statistically independent. Applications of these results to Epstein's zeta functions are briefly discussed.
引用
收藏
页码:1155 / 1167
页数:13
相关论文
共 32 条
[1]  
ARGAMAN N, 1992, WIS9273 PREPR
[2]   Semiclassical formula for the number variance of the Riemann zeros [J].
Berry, M. V. .
NONLINEARITY, 1988, 1 (03) :399-407
[4]  
BOHIGAS O, 1991, HOUCHES
[5]  
BOMBIERI E, 1987, CR ACAD SCI I-MATH, V304, P213
[6]  
CHERWELL, 1946, Q J MATH, V18, P46
[7]   AN APPROXIMATE FUNCTIONAL EQUATION FOR DIRICHLET L-FUNCTIONS [J].
DAVIES, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1965, 284 (1397) :224-&
[8]   EVALUATION OF DIRICHLET L-FUNCTIONS [J].
DAVIES, D ;
HASELGROVE, CB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1961, 264 (1316) :122-+
[9]  
ERDELYI A, 1955, HIGH TRANSCENDENTAL, V3, P193
[10]  
GIANNONI MJ, 1991, HOUCHES