SOLVING THE SHORTEST-PATHS PROBLEM ON BIPARTITE PERMUTATION GRAPHS EFFICIENTLY

被引:12
作者
CHEN, L [1 ]
机构
[1] W COAST UNIV,DEPT COMP SCI,LOS ANGELES,CA 90020
关键词
PARALLEL ALGORITHMS; SHORTEST PATHS; BIPARTITE PERMUTATION GRAPHS; UPPER AND LOWER BOUNDS;
D O I
10.1016/0020-0190(95)00084-P
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present optimal sequential and parallel algorithms for the shortest-paths problems on strongly ordered bipartite (permutation) graphs. The parallel algorithm runs in O(log n) time on a CREW PRAM and is both time-optimal and work-optimal. With a published procedure as a subroutine, this work immediately leads to an optimal O(n(2)) time algorithm for the all-pairs shortest-paths problem on arbitrary bipartite permutation graphs.
引用
收藏
页码:259 / 264
页数:6
相关论文
共 14 条
[1]  
Akl S. G., 1989, DESIGN ANAL PARALLEL
[2]  
AKL SG, 1989, 11TH P IFIP C SAN FR, P515
[3]   OPTIMAL PARALLEL TIME-BOUNDS FOR THE MAXIMUM CLIQUE PROBLEM ON INTERVALS [J].
CHEN, L .
INFORMATION PROCESSING LETTERS, 1992, 42 (04) :197-201
[4]   EFFICIENT PARALLEL ALGORITHMS FOR BIPARTITE PERMUTATION GRAPHS [J].
CHEN, L ;
YESHA, Y .
NETWORKS, 1993, 23 (01) :29-39
[5]   APPROXIMATE PARALLEL SCHEDULING .1. THE BASIC TECHNIQUE WITH APPLICATIONS TO OPTIMAL PARALLEL LIST RANKING IN LOGARITHMIC TIME [J].
COLE, R ;
VISHKIN, U .
SIAM JOURNAL ON COMPUTING, 1988, 17 (01) :128-142
[6]   UPPER AND LOWER TIME-BOUNDS FOR PARALLEL RANDOM-ACCESS MACHINES WITHOUT SIMULTANEOUS WRITES [J].
COOK, S ;
DWORK, C ;
REISCHUK, R .
SIAM JOURNAL ON COMPUTING, 1986, 15 (01) :87-97
[7]   PARALLEL MATRIX AND GRAPH ALGORITHMS [J].
DEKEL, E ;
NASSIMI, D ;
SAHNI, S .
SIAM JOURNAL ON COMPUTING, 1981, 10 (04) :657-675
[8]  
Dijkstra EW., 1959, NUMER MATH, V1, P269, DOI DOI 10.1007/BF01386390
[9]   ALGORITHM-97 - SHORTEST PATH [J].
FLOYD, RW .
COMMUNICATIONS OF THE ACM, 1962, 5 (06) :345-345
[10]   FIBONACCI HEAPS AND THEIR USES IN IMPROVED NETWORK OPTIMIZATION ALGORITHMS [J].
FREDMAN, ML ;
TARJAN, RE .
JOURNAL OF THE ACM, 1987, 34 (03) :596-615