SANDWICH APPROXIMATION OF UNIVARIATE CONVEX-FUNCTIONS WITH AN APPLICATION TO SEPARABLE CONVEX-PROGRAMMING

被引:32
作者
BURKARD, RE [1 ]
HAMACHER, HW [1 ]
ROTE, G [1 ]
机构
[1] UNIV KAISERSLAUTERN,FACHBEREICH MATH,W-6750 KAISERSLAUTERN,GERMANY
关键词
D O I
10.1002/nav.3800380609
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article an algorithm for computing upper and lower epsilon-approximations of a (implicitly or explicitly) given convex function h defined on an interval of length T is developed. The approximations can be obtained under weak assumptions on h (in particular, no differentiability), and the error decreases quadratically with the number of iterations. To reach an absolute accuracy of epsilon the number of iterations is bounded by square-root 9DT/8-epsilon, where D is the total increase in slope of h. As an application we discuss separable convex programs.
引用
收藏
页码:911 / 924
页数:14
相关论文
共 22 条
[1]   BICRITERIA TRANSPORTATION PROBLEM [J].
ANEJA, YP ;
NAIR, KPK .
MANAGEMENT SCIENCE, 1979, 25 (01) :73-78
[2]  
Bazaraa M. S., 1979, NONLINEAR PROGRAMMIN
[3]  
BURKARD RE, 1987, 891987 TU GRAZ I MAT
[5]  
DEMBO RS, 1981, MATH PROGRAM STUD, V15, P125, DOI 10.1007/BFb0120941
[6]   APPROXIMATION OF CONVEX CURVES WITH APPLICATION TO THE BICRITERIAL MINIMUM COST FLOW PROBLEM [J].
FRUHWIRTH, B ;
BURKARD, RE ;
ROTE, G .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1989, 42 (03) :326-338
[7]   OBJECTIVE FUNCTION APPROXIMATIONS IN MATHEMATICAL-PROGRAMMING [J].
GEOFFRION, AM .
MATHEMATICAL PROGRAMMING, 1977, 13 (01) :23-37
[8]  
Gruber P. M., 1983, CONVEXITY ITS APPL, P131
[9]  
KAMESAM PV, 1984, MATH PROGRAM STUD, V22, P185, DOI 10.1007/BFb0121016
[10]  
KAO CY, 1981, MATH PROGRAM STUD, V14, P143, DOI 10.1007/BFb0120926