A PARALLEL ALGORITHM FOR ENCLOSED AND ENCLOSING TRIANGLES

被引:31
作者
Chandran, Sharat [1 ]
Mountt, David M. [2 ,3 ]
机构
[1] NTT Data Commun Syst Corp, Saiwai Ku, Kawasaki, Kanagawa 210, Japan
[2] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Minimum enclosures; convex polygons; parallel algorithms; rotating calipers;
D O I
10.1142/S0218195992000123
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problems of computing the largest area triangle enclosed within a given n-sided convex polygon and the smallest area triangle which encloses a given convex polygon. We show that these problems are closely related by presenting a single sequential linear time algorithm which essentially solves both problems simultaneously. We also present a cost-optimal parallel algorithm that solves both of these problems in O (log log n) time using n/log log n processors on a CRCW PRAM. In order to achieve these bounds we develop new techniques for the design of parallel algorithms for computational problems involving the rotating calipers method.
引用
收藏
页码:191 / 214
页数:24
相关论文
共 12 条
[1]  
Aggarwal A., 1988, 29th Annual Symposium on Foundations of Computer Science (IEEE Cat. No.88CH2652-6), P497, DOI 10.1109/SFCS.1988.21966
[2]   PARALLEL COMPUTATIONAL GEOMETRY [J].
AGGARWAL, A ;
CHAZELLE, B ;
GUIBAS, L ;
ODUNLAING, C ;
YAP, C .
ALGORITHMICA, 1988, 3 (03) :293-327
[3]   FINDING EXTREMAL POLYGONS [J].
BOYCE, JE ;
DOBKIN, DP ;
DRYSDALE, RL ;
GUIBAS, LJ .
SIAM JOURNAL ON COMPUTING, 1985, 14 (01) :134-147
[4]  
Chang J. S., 1984, 25th Annual Symposium on Foundations of Computer Science (Cat. No. 84CH2085-9), P408, DOI 10.1109/SFCS.1984.715942
[5]  
DePano N.A.A., 1987, THESIS J HOPKINS U
[6]  
Dobkin D. P., 1979, 20th Annual Symposium of Foundations of Computer Science, P9, DOI 10.1109/SFCS.1979.28
[7]   RELATIONS BETWEEN CONCURRENT-WRITE MODELS OF PARALLEL COMPUTATION [J].
FICH, FE ;
RAGDE, P ;
WIGDERSON, A .
SIAM JOURNAL ON COMPUTING, 1988, 17 (03) :606-627
[8]   FINDING THE SMALLEST TRIANGLES CONTAINING A GIVEN CONVEX POLYGON [J].
KLEE, V ;
LASKOWSKI, MC .
JOURNAL OF ALGORITHMS, 1985, 6 (03) :359-375
[9]  
KRUSKAL CP, 1983, IEEE T COMPUT, V32, P942, DOI 10.1109/TC.1983.1676138
[10]  
Mount D. M., 1988, Proceedings. Twenty-Sixth Annual Allerton Conference on Communication, Control, and Computing, P87