HINGING HYPERPLANES FOR REGRESSION, CLASSIFICATION, AND FUNCTION APPROXIMATION

被引:282
作者
BREIMAN, L
机构
[1] Dept. of Stat., California Univ., Berkeley, CA
关键词
NONLINEAR FUNCTION APPROXIMATION; CLASSIFICATION; PREDICTION; REGRESSION; HYPERPLANES;
D O I
10.1109/18.256506
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A hinge function y=h(x) consists of two hyperplanes continuously joined together at a hinge. In regression (prediction), classification (pattern recognition), and noiseless function approximation, use of sums of hinge functions gives a powerful and efficient alternative to neural networks with compute times several orders of magnitude less than fitting neural networks with a comparable number of parameters. The core of the methodology is a simple and effective method for finding good hinges.
引用
收藏
页码:999 / 1013
页数:15
相关论文
共 14 条
[1]  
BARRON AR, 1991, 58 U ILL URB CHAMP D
[2]   THE PI METHOD FOR ESTIMATING MULTIVARIATE FUNCTIONS FROM NOISY DATA [J].
BREIMAN, L .
TECHNOMETRICS, 1991, 33 (02) :125-143
[3]  
BREIMAN L, 1990, 169 U CAL STAT DEP B
[4]  
BREIMAN L, 1987, 40 U CAL STAT DEP TE
[5]  
BREIMAN L, 1990, 197 U CAL STAT DEP T
[6]  
BREIMAN L, 1990, CLASSIFICATION REGRE
[7]   PROJECTION PURSUIT REGRESSION [J].
FRIEDMAN, JH ;
STUETZLE, W .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (376) :817-823
[8]   MULTIVARIATE ADAPTIVE REGRESSION SPLINES [J].
FRIEDMAN, JH .
ANNALS OF STATISTICS, 1991, 19 (01) :1-67
[9]  
HASTIE T, GENERALIZED ADDITIVE
[10]  
JONES L, 1990, 16 U LOW DEP MATH TE