BIFURCATIONS IN GLOBALLY COUPLED MAP LATTICES

被引:19
作者
JUST, W
机构
[1] Theoretische Festkörperphysik, Technische Hochschule Darmstadt, Darmstadt
关键词
COUPLED MAP LATTICE; STABILITY ANALYSIS; NONHYPERBOLIC EFFECTS;
D O I
10.1007/BF02179397
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamics of globally coupled map lattices can be described in terms of a nonlinear Frobenius-Perron equation in the limit of large system size. This approach allows for an analytical computation of stationary states and their stability. The bifurcation behavior of coupled tent maps near the chaotic band merging point is presented. Furthermore, the time-independent states of coupled logistic equations are analyzed. The bifurcation diagram of the uncoupled map carries over to the map lattice. The analytical results are supplemented with numerical simulations
引用
收藏
页码:429 / 449
页数:21
相关论文
共 29 条
[1]   STABILITY OF SPATIALLY HOMOGENEOUS CHAOTIC REGIMES IN UNIDIRECTIONAL CHAINS [J].
ARANSON, IS ;
AFRAIMOVICH, VS ;
RABINOVICH, MI .
NONLINEARITY, 1990, 3 (03) :639-651
[2]   Spacetime chaos in coupled map lattices [J].
Bunimovich, L. A. ;
Sinai, Ya G. .
NONLINEARITY, 1988, 1 (04) :491-516
[3]   SPATIO-TEMPORAL INTERMITTENCY IN COUPLED MAP LATTICES [J].
CHATE, H ;
MANNEVILLE, P .
PHYSICA D, 1988, 32 (03) :409-422
[4]  
Collet P., 1980, ITERATED MAPS INTERV
[5]  
CROSS MC, 1993, REV MOD PHYS, V65, P854
[6]  
Crutchfield J., 1987, DIRECTIONS CHAOS
[8]   STATISTICAL-MECHANICS OF A NON-LINEAR STOCHASTIC-MODEL [J].
DESAI, RC ;
ZWANZIG, R .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :1-24
[9]   STATISTICAL PROPERTIES OF SPATIOTEMPORAL DYNAMICAL-SYSTEMS [J].
DING, MZ ;
WILLE, LT .
PHYSICAL REVIEW E, 1993, 48 (03) :R1605-R1608
[10]   SCALING PROPERTIES OF MULTIFRACTALS AS AN EIGENVALUE PROBLEM [J].
FEIGENBAUM, MJ ;
PROCACCIA, I ;
TEL, T .
PHYSICAL REVIEW A, 1989, 39 (10) :5359-5372