SEQUENCE REQUIREMENTS OF THE EPSTEIN-BARR-VIRUS LATENT ORIGIN OF DNA-REPLICATION

被引:86
作者
HARRISON, S [1 ]
FISENNE, K [1 ]
HEARING, J [1 ]
机构
[1] SUNY STONY BROOK,HLTH SCI CTR,DEPT MICROBIOL,STONY BROOK,NY 11794
关键词
D O I
10.1128/JVI.68.3.1913-1925.1994
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The Epstein-Barr virus (EBV) latent origin of DNA replication (oriP) is composed of two elements that contain binding sites for the sole viral gene product required for latent cycle replication, EBNA-1. One of these elements, region I, functions as an EBNA-1-dependent enhancer for RNA polymerase II-transcribed genes, may play a role in plasmid segregation, and is required for origin function in B cells latently infected with EBV. The second element, region II, contains or is very near the site of initiation of DNA replication. A genetic approach was taken to determine the contribution of the EBNA-1 binding sites in oriP to origin function. Although region I is required for the transient replication of plasmids bearing region II in EBV-infected B cells, a plasmid lacking region I but containing region II, was observed to replicate transiently in both D98/Raji and HeLa cells expressing EBNA-1. Thus, binding of EBNA-1 to region I is not absolutely required for the molecular events that lead to initiation of DNA replication at region II. Site-directed mutagenesis of the four EBNA-1-binding sites in region II, individually and in various combinations, demonstrated that only two EBNA-1-binding sites are required for region II function. The results obtained with these mutants, together with the analysis of the replicative ability of plasmids containing insertions between EBNA-1-binding sites, suggested that the spatial relationship of the two sites is critical. Mutants that contain only two EBNA-1-binding sites separated by 26 to 31 bp in region II were not maintained as plasmids over many cell generations and were greatly reduced in their ability to replicate transiently in D98/Raji cells. The EBNA-1-induced bending or untwisting of the DNA in EBNA-1-binding sites 1 and 4 in region II did not, however, demonstrate this spatial constraint. It may be concluded from these results that specific protein-protein interactions between EBNA-1 and/or between EBNA-1 and a cellular protein(s) are required for origin function.
引用
收藏
页码:1913 / 1925
页数:13
相关论文
共 54 条
[1]   REPLICATION OF LATENT EPSTEIN-BARR-VIRUS GENOMES IN RAJI CELLS [J].
ADAMS, A .
JOURNAL OF VIROLOGY, 1987, 61 (05) :1743-1746
[2]   DEFINITION OF THE SEQUENCE REQUIREMENTS FOR BINDING OF THE EBNA-1 PROTEIN TO ITS PALINDROMIC TARGET SITES IN EPSTEIN-BARR-VIRUS DNA [J].
AMBINDER, RF ;
SHAH, WA ;
RAWLINS, DR ;
HAYWARD, GS ;
HAYWARD, SD .
JOURNAL OF VIROLOGY, 1990, 64 (05) :2369-2379
[3]   FUNCTIONAL DOMAINS OF EPSTEIN-BARR-VIRUS NUCLEAR ANTIGEN EBNA-1 [J].
AMBINDER, RF ;
MULLEN, M ;
CHANG, YN ;
HAYWARD, GS ;
HAYWARD, SD .
JOURNAL OF VIROLOGY, 1991, 65 (03) :1466-1478
[4]   DNA-SEQUENCE AND EXPRESSION OF THE B95-8 EPSTEIN-BARR VIRUS GENOME [J].
BAER, R ;
BANKIER, AT ;
BIGGIN, MD ;
DEININGER, PL ;
FARRELL, PJ ;
GIBSON, TJ ;
HATFULL, G ;
HUDSON, GS ;
SATCHWELL, SC ;
SEGUIN, C ;
TUFFNELL, PS ;
BARRELL, BG .
NATURE, 1984, 310 (5974) :207-211
[5]   LOCALIZED MELTING AND STRUCTURAL-CHANGES IN THE SV40 ORIGIN OF REPLICATION INDUCED BY T-ANTIGEN [J].
BOROWIEC, JA ;
HURWITZ, J .
EMBO JOURNAL, 1988, 7 (10) :3149-3158
[6]   BINDING AND UNWINDING - HOW T-ANTIGEN ENGAGES THE SV40 ORIGIN OF DNA-REPLICATION [J].
BOROWIEC, JA ;
DEAN, FB ;
BULLOCK, PA ;
HURWITZ, J .
CELL, 1990, 60 (02) :181-184
[7]   DNA SUPERCOILING PROMOTES FORMATION OF A BENT REPRESSION LOOP IN LAC DNA [J].
BOROWIEC, JA ;
LI, Z ;
SASSEDWIGHT, S ;
GRALLA, JD .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 196 (01) :101-111
[8]   DUPLEX OPENING BY DNAA PROTEIN AT NOVEL SEQUENCES IN INITIATION OF REPLICATION AT THE ORIGIN OF THE ESCHERICHIA-COLI CHROMOSOME [J].
BRAMHILL, D ;
KORNBERG, A .
CELL, 1988, 52 (05) :743-755
[9]   FUNCTIONAL LIMITS OF ORIP, THE EPSTEIN-BARR VIRUS PLASMID ORIGIN OF REPLICATION [J].
CHITTENDEN, T ;
LUPTON, S ;
LEVINE, AJ .
JOURNAL OF VIROLOGY, 1989, 63 (07) :3016-3025
[10]  
DAMBAUGH T, 1986, EPSTEINBARR VIRUS RE, P13