ASYMPTOTIC-BEHAVIOR (IN T) OF SOLUTIONS OF THE CYLINDRICAL KDV EQUATION .1.

被引:8
作者
SANTINI, PM [1 ]
机构
[1] NATL INST NUCL PHYS, SEZ ROMA, ROME, ITALY
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS | 1979年 / 54卷 / 02期
关键词
D O I
10.1007/BF02899790
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
引用
收藏
页码:241 / 258
页数:18
相关论文
共 11 条
[1]   DECAY OF CONTINUOUS SPECTRUM FOR SOLUTIONS OF KORTEWEG-DEVRIES EQUATION [J].
ABLOWITZ, MJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (09) :1277-1284
[2]  
ABRAMOWITZ M, 1965, HDB MATH FUNCTIONS, pCH10
[3]   SOLUTION BY SPECTRAL-TRANSFORM METHOD OF A NON-LINEAR EVOLUTION EQUATION INCLUDING AS A SPECIAL CASE CYLINDRICAL KDV EQUATION [J].
CALOGERO, F ;
DEGASPERIS, A .
LETTERE AL NUOVO CIMENTO, 1978, 23 (04) :150-154
[4]   CONSERVATION LAWS FOR A NON-LINEAR EVOLUTION EQUATION THAT INCLUDES AS A SPECIAL CASE CYLINDRICAL KDV EQUATION [J].
CALOGERO, F ;
DEGASPERIS, A .
LETTERE AL NUOVO CIMENTO, 1978, 23 (04) :155-160
[5]   INVERSE SPECTRAL PROBLEM FOR ONE-DIMENSIONAL SCHRODINGER EQUATION WITH AN ADDITIONAL LINEAR POTENTIAL [J].
CALOGERO, F ;
DEGASPERIS, A .
LETTERE AL NUOVO CIMENTO, 1978, 23 (04) :143-149
[6]  
Erde, 1956, ASYMPTOTIC EXPANSION
[7]   OBSERVATIONS OF ION-ACOUSTIC CYLINDRICAL SOLITONS [J].
HERSHKOWITZ, N ;
ROMESSER, T .
PHYSICAL REVIEW LETTERS, 1974, 32 (11) :581-583
[8]  
Korteweg D.J., 1895, PHILOS MAG, V39, P422, DOI [10.1080/14786449508620739, DOI 10.1080/14786449508620739]
[9]   CYLINDRICAL SOLITONS [J].
MAXON, S ;
VIECELLI, J .
PHYSICS OF FLUIDS, 1974, 17 (08) :1614-1616
[10]  
Olver F.W., 1974, ASYMPTOTIC SPECIAL F