REFORMULATION OF STOKES THEORY FOR HIGHER THAN 2ND-DEGREE REFERENCE FIELD AND MODIFICATION OF INTEGRATION KERNELS

被引:67
作者
VANICEK, P
SJOBERG, LE
机构
来源
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS | 1991年 / 96卷 / B4期
关键词
D O I
10.1029/90JB02782
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
An argument is put forward in favor of using a model gravity field of a degree and order higher than 2 as a reference in gravity field studies. Stokes's approach to the evaluation of the geoid from gravity anomalies is then generalized to be applicable to a higher than second-order reference spheroid. The effects of truncating Stokes's integration and of modifying the integration kernels are investigated in the context of the generalized approach. Several different modification schemes, starting with a Molodenskij-like modification and ending with the least squares modification, are studied. Particular attention is devoted to looking at both global and local biases and mean square errors of the individual schemes.
引用
收藏
页码:6529 / 6539
页数:11
相关论文
共 16 条
  • [1] Christou N.T., 1989, EOS T AGU, V70, P625
  • [2] Heck B., 1989, Bulletin Geodesique, V63, P57, DOI 10.1007/BF02520229
  • [3] JEKELI C, 1980, 301 OH STAT U DEP GE
  • [4] LACHAPELLE G, 1977, 2ND INT SUMM SCH M R
  • [5] MOLODENSKIJ MS, 1960, METHODS STUDY EXTERN
  • [6] Moritz H., 1980, B GE ODE SIQUE, V54, P395, DOI [10.1007/BF02521480, DOI 10.1007/BF02521480, 10.1007/s001900050278]
  • [7] Moritz H, 1967, PHYS GEODESY
  • [8] NAGY D, 1973, P S EARTHS GRAVITY F, P188
  • [9] Sjoberg L.E, 1986, B GEODESIA SCI AFFIN, V45, P229
  • [10] SJOBERG LE, 1987, 19 GEN ASS IUGG IAU