The boxA sequences of the E. coli ribosomal RNA (rrn) operons are sufficient to cause RNA polymerase to read through Rho-dependent transcriptional terminators. We show that a complex of the transcription antitermination factors NusB and ribosomal protein S10 interacts specifically with box A RNA. Neither Nus B nor S10 binds boxA RNA on its own, and neither NusA nor NusG affects the interaction of the NusB-S10 complex with boxA RNA. Mutations in boxA that impair its anti-termination activity compromise its interaction with NusB and S10, suggesting that ribosomal protein S10 regulates the synthesis of ribosomal RNA in bacteria. RNA containing the closely related boxA sequence from the bacteriophage lambda nutR site is not stably bound by NusB and S10. This probably explains why antitermination in phage lambda depends on the phage lambda N protein and the boxB component of the nut site, in addition to boxA.