LIMIT THEOREMS FOR PROBABILITIES OF LARGE DEVIATIONS

被引:20
作者
FELLER, W
机构
[1] Fine Hall Princeton University, Princeton, 08540, N.J.
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1969年 / 14卷 / 01期
关键词
D O I
10.1007/BF00534113
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {Xk,n; k=1, ⋯, n} be a triangular array of independent variables with row sums Sn. Suppose E(Xk,n) = 0 and E(Sn2) = 1 and that {Mathematical expression} exists for 0≦h≦e{open}n. Under mild conditions we show that {Mathematical expression} where the quantities zn and rn are related by the parametric equations {Mathematical expression} If the distributions of the Xk,n behave reasonably well it is usually not difficult to obtain satisfactory asymptotic estimates for zn in terms of rn and vice versa. The principal application is to sequences Xk. Then Xk,n= Xk/sn and Sn = (X1+⋯.+Xn)/sn. A familiar special case of (1) is given by {Mathematical expression} where {Mathematical expression} is the standard normal distribution and Pn a certain power series. In this case rn = zn2but (2) may lead to radically different relationships between rn and zn. © 1969 Springer-Verlag.
引用
收藏
页码:1 / &
相关论文
共 13 条
[1]  
Cramer H., 1938, ACTUAL SCI IND, V736, P5
[2]  
Esscher F, 1932, SKAND AKTUARIETIDSKR, V15, P175
[3]   Generalization of a probability limit theorem of Cramer [J].
Feller, W. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1943, 54 (1-3) :361-372
[5]   The general form of the so-called law of the iterated logarithm [J].
Feller, W. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1943, 54 (1-3) :373-402
[6]  
FELLER W, 1966, INTRODUCTION PROBABI, V2
[7]  
LINNIK YV, 1961, 4TH P BERK S MATH ST, V2, P289
[8]  
Marcinkiewicz J, 1937, FUND MATH, V29, P215
[9]  
Petrov V.V., 1963, VESTNIK LENINGRAD U, V19, P49
[10]  
PETROV VV, 1953, V LENIN MEK, P13