COMPLEX DYNAMICS IN ECOLOGICAL TIME-SERIES

被引:438
作者
TURCHIN, P
TAYLOR, AD
机构
关键词
AUTOCORRELATION FUNCTION; CHAOS; COMPLEX DETERMINISTIC DYNAMICS; DELAYED DENSITY DEPENDENCE; DYNAMIC BEHAVIORS OF POPULATIONS; INSECT POPULATION DYNAMICS; LIMIT CYCLES; LONG-TERM POPULATION RECORDS; NONLINEAR TIME-SERIES MODELING; QUASI-PERIODICITY; TIME-SERIES ANALYSIS;
D O I
10.2307/1938740
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Although the possibility of complex dynamical behaviors-limit cycles, quasiperiodic oscillations, and aperiodic chaos-has been recognized theoretically, most ecologists are skeptical of their importance in nature. In this paper we develop a methodology for reconstructing endogenous (or deterministic) dynamics from ecological time series. Our method consists of fitting a response surface to the yearly population change as a function of lagged population densities. Using the version of the model that includes two lags, we fitted time-series data for 14 insect and 22 vertebrate populations. The 14 insect populations were classified as: unregulated (1 case), exponentially stable (three cases), damped oscillations (six cases), limit cycles (one case), quasiperiodic oscillations (two cases), and chaos (one case). The vertebrate examples exhibited a similar spectrum of dynamics, although there were no cases of chaos. We tested the results of the response-surface methodology by calculating autocorrelation functions for each time series. Autocorrelation patterns were in agreement with our findings of periodic behaviors (damped oscillations, limit cycles, and quasiperiodicity). On the basis of these results, we conclude that the complete spectrum of dynamical behaviors, ranging from exponential stability to chaos, is likely to be found among natural populations.
引用
收藏
页码:289 / 305
页数:17
相关论文
共 58 条