CONFOCAL LASER-SCANNING MICROSCOPY REVEALS VOLTAGE-GATED CALCIUM SIGNALS WITHIN HIPPOCAMPAL DENDRITIC SPINES

被引:61
作者
JAFFE, DB
FISHER, SA
BROWN, TH
机构
[1] YALE UNIV,DEPT PSYCHOL,NEW HAVEN,CT 06520
[2] YALE UNIV,DEPT CELLULAR & MOLEC PHYSIOL,NEW HAVEN,CT 06520
[3] YALE UNIV,YALE CTR THEORET & APPL NEUROSCI,NEW HAVEN,CT 06520
来源
JOURNAL OF NEUROBIOLOGY | 1994年 / 25卷 / 03期
关键词
FLUORESCENCE MICROSCOPY; CA2+ CHANNELS; PYRAMIDAL NEURONS; CA1; REGION;
D O I
10.1002/neu.480250303
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The induction of long-term potentiation (LTP) is generally assumed to be triggered by Ca2+ entry into dendritic spines via NMDA receptor-gated channels. A previous computational model proposed that spines serve several functions in this process. First, they compartmentalize and amplify increases in [Ca2+],. Second, they augment the nonlinear relationship between synaptic strength and the probability or magnitude of LTP induction. Third, they isolate the metabolic machinery responsible for LTP induction from increases in [Ca2+](i) produced by voltage-gated Ca2+ channels in the dendritic shaft. Here we examine this last prediction of the model using methods that combine confocal microscopy with simultaneous neurophysiological recordings in hippocampal brain slices. Either of two Ca2+-sensitive dyes were injected into CA1 pyramidal neurons. Direct depolarization of the neurons via the somatic electrode produced clear increases in Ca2+ signals within the dendritic spines, a result that was not predicted by the previous spine model. Our new spine model suggests that some of this signal could theoretically I result from Ca2+-bound dye diffusing from the dendritic shaft into the spine. Dye diffusion alone cannot, however, explain the numerous cases in which the Ca2+ signal in the spine was considerably larger than that in the adjacent dendritic shaft. The latter observations raise the possibility of voltage-gated Ca2+ entry directly into the spine or else perhaps via Ca2+-dependent Ca2+ release. The new spine model accommodates these observations as well as several other recent experimental result. (C) 1994 John Wiley & Sons,Inc.
引用
收藏
页码:220 / 233
页数:14
相关论文
共 34 条
  • [1] INDUCTION OF LTP IN THE HIPPOCAMPUS NEEDS SYNAPTIC ACTIVATION OF GLUTAMATE METABOTROPIC RECEPTORS
    BASHIR, ZI
    BORTOLOTTO, ZA
    DAVIES, CH
    BERRETTA, N
    IRVING, AJ
    SEAL, AJ
    HENLEY, JM
    JANE, DE
    WATKINS, JC
    COLLINGRIDGE, GL
    [J]. NATURE, 1993, 363 (6427) : 347 - 350
  • [2] THEORY FOR THE DEVELOPMENT OF NEURON SELECTIVITY - ORIENTATION SPECIFICITY AND BINOCULAR INTERACTION IN VISUAL-CORTEX
    BIENENSTOCK, EL
    COOPER, LN
    MUNRO, PW
    [J]. JOURNAL OF NEUROSCIENCE, 1982, 2 (01) : 32 - 48
  • [3] BLATTER LA, 1990, BIOPHYS J, V58, P491
  • [4] A SYNAPTIC MODEL OF MEMORY - LONG-TERM POTENTIATION IN THE HIPPOCAMPUS
    BLISS, TVP
    COLLINGRIDGE, GL
    [J]. NATURE, 1993, 361 (6407) : 31 - 39
  • [5] Brown T., 1990, SYNAPTIC ORG BRAIN, P346
  • [6] Brown T. H., 1989, NEURAL MODELS PLASTI, P266
  • [7] BROWN TH, 1990, ANNU REV NEUROSCI, V13, P475, DOI 10.1146/annurev.ne.13.030190.002355
  • [8] LONG-TERM SYNAPTIC POTENTIATION
    BROWN, TH
    CHAPMAN, PF
    KAIRISS, EW
    KEENAN, CL
    [J]. SCIENCE, 1988, 242 (4879) : 724 - 728
  • [9] KINETICS OF DIFFUSION IN A SPHERICAL CELL .1. NO SOLUTE BUFFERING
    CARNEVALE, NT
    ROSENTHAL, S
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 1992, 41 (03) : 205 - 216
  • [10] CA-2+ RELEASE FROM ENDOPLASMIC-RETICULUM IS MEDIATED BY A GUANINE-NUCLEOTIDE REGULATORY MECHANISM
    GILL, DL
    UEDA, T
    CHUEH, SH
    NOEL, MW
    [J]. NATURE, 1986, 320 (6061) : 461 - 464