DAVENPORT-SCHINZEL THEORY OF MATRICES

被引:80
作者
FUREDI, Z
HAJNAL, P
机构
[1] PRINCETON UNIV,DEPT COMP SCI,PRINCETON,NJ 08544
[2] MIT,DEPT MATH,CAMBRIDGE,MA 02139
基金
美国国家科学基金会; 匈牙利科学研究基金会;
关键词
D O I
10.1016/0012-365X(92)90316-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a configuration of 1's. We define f (n; C) to be the maximal number of 1's in a 0-1 matrix of size n X n not having C as a subconfiguration. We consider the problem of determining the order of f (n; C) for several forbidden C's. Among other results we prove that f (n; (1 1 1 1)) = THETA(alpha(n)n), where alpha(n) is the inverse of the Ackermann function.
引用
收藏
页码:233 / 251
页数:19
相关论文
共 19 条
[1]   The Hilbert construction of real numbers [J].
Ackermann, W .
MATHEMATISCHE ANNALEN, 1928, 99 :118-133
[2]  
ADAMEC R, FORBIDDEN WORDS
[3]  
AGARWAL P, SHARP UPPER LOWER BO
[4]  
BIENSTOCK D, IN PRESS SIAM J DISC
[5]  
Bollobas B., 1978, LONDON MATH SOC MONO
[6]   ON GRAPHS THAT DO NOT CONTAIN A THOMSEN GRAPH [J].
BROWN, WG .
CANADIAN MATHEMATICAL BULLETIN, 1966, 9 (03) :281-&
[7]  
DAVENPORT H, 1971, ACTA ARITH, V17, P363
[8]   ON THE STRUCTURE OF LINEAR GRAPHS [J].
ERDOS, P ;
STONE, AH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (12) :1087-1091
[9]  
Erdos P., 1966, STUDIA SCI MATH HUNG, V1, P215
[10]  
Erdos P., 1966, STUDIA SCI MATH HUNG, V1, P51