ATTACHMENT AND PROLIFERATION OF OSTEOBLASTS AND FIBROBLASTS ON BIOMATERIALS FOR ORTHOPEDIC USE

被引:230
作者
HUNTER, A
ARCHER, CW
WALKER, PS
BLUNN, GW
机构
[1] UNIV COLL & MIDDLESEX SCH MED,INST ORTHOPAED,STANMORE HA7 4LP,MIDDX,ENGLAND
[2] UNIV WALES COLL CARDIFF,DEPT ANAT,CARDIFF CF1 3YF,S GLAM,WALES
关键词
BIOCOMPATIBILITY; CELL PROLIFERATION; CELL ATTACHMENT FIBROBLASTS; OSTEOBLASTS;
D O I
10.1016/0142-9612(95)93256-D
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Using a variety of cell types, cell attachment and growth was studied on prospective (polyethersulphone (PES) and polyetheretherketone) and currently used (titanium 318 alloy, cobalt chrome molybdenum alloy and ultra-high molecular weight polyethylene (UHMWPE)) orthopaedic biomaterials. Proliferation of fibroblasts and osteoblasts was measured using incorporation of tritiated thymidine into total DNA. Attachment of cells was assessed by indirect immunofluorescent labelling of vinculin, a component of the cell's focal adhesion plaque. The degree of cell attachment was quantified on the materials by determining the mean number of adhesion plaques and using an image analysis system to determine the mean total area of plaques per cell. Fibroblasts and osteoblasts responded differently to the materials tested. When grown on PES surfaces, rat tail fibroblasts synthesized significantly greater amounts of DNA than cells on all other surfaces, whilst fibroblasts on UHMWPE synthesized significantly less DNA than cells on all other materials. Interestingly, there was no significant difference between the amounts of DNA synthesized by osteoblasts grown on the various materials. Determination of the number of vinculin adhesion plaques per cell and the mean total area of the plaques per cell showed that the attachment of fibroblasts to UHMWPE was significantly reduced compared with other materials. In contrast there was no significant difference in the adhesion of osteoblasts to different materials. Scanning electron microscope (SEM) observations of cells on the materials correlated with the morphometric data. Cells with the greatest number and area of adhesion plaques were well spread and flattened whilst those with the least number of adhesion plaques were more rounded and less spread.
引用
收藏
页码:287 / 295
页数:9
相关论文
共 16 条
[1]   CELL-SHAPE AND CARTILAGE DIFFERENTIATION OF EARLY CHICK LIMB BUD CELLS IN CULTURE [J].
ARCHER, CW ;
ROONEY, P ;
WOLPERT, L .
CELL DIFFERENTIATION, 1982, 11 (04) :245-251
[2]   PRELIMINARY STUDIES ON THE PHENOMENOLOGICAL BEHAVIOR OF OSTEOBLASTS CULTURED ON HYDROXYAPATITE CERAMICS [J].
BAGAMBISA, FB ;
JOOS, U .
BIOMATERIALS, 1990, 11 (01) :50-56
[3]   MINERALIZED BONE NODULES FORMED INVITRO FROM ENZYMATICALLY RELEASED RAT CALVARIA CELL-POPULATIONS [J].
BELLOWS, CG ;
AUBIN, JE ;
HEERSCHE, JNM ;
ANTOSZ, ME .
CALCIFIED TISSUE INTERNATIONAL, 1986, 38 (03) :143-154
[4]   ANIMAL-CELL SHAPE CHANGES AND GENE-EXPRESSION [J].
BENZEEV, A .
BIOESSAYS, 1991, 13 (05) :207-212
[5]  
BOBYN JD, 1985, QUANTITATIVE CHARACT, P185
[6]   BONE-FORMATION BY OSTEOBLAST-LIKE CELLS IN A 3-DIMENSIONAL CELL-CULTURE [J].
CASSERBETTE, M ;
MURRAY, AB ;
CLOSS, EI ;
ERFLE, V ;
SCHMIDT, J .
CALCIFIED TISSUE INTERNATIONAL, 1990, 46 (01) :46-56
[7]  
COTTRIL CP, 1986, THESIS U LONDON
[8]   ROLE OF CELL-SHAPE IN GROWTH-CONTROL [J].
FOLKMAN, J ;
MOSCONA, A .
NATURE, 1978, 273 (5661) :345-349
[9]  
HUNTER A, 1992, BIOMATERIAL TISSUE I, V10
[10]  
HUNTER A, 1992, 38TH ANN M AM ORTH R, P578