SIMULATION OF NONHOMOGENEOUS POISSON PROCESSES BY THINNING

被引:515
作者
LEWIS, PAW [1 ]
SHEDLER, GS [1 ]
机构
[1] IBM CORP,RES LAB,SAN JOSE,CA 95114
关键词
POISSON PROCESSES;
D O I
10.1002/nav.3800260304
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A simple and relatively efficient method for simulating one-dimensional and two-dimensional nonhomogeneous Poisson processes is presented. The method is applicable for any rate function and is based on controlled deletion of points in a Poisson process whose rate function dominates the given rate function. In its simplest implementation, the method obviates the need for numerical integration of the rate function, for ordering of points, and for generation of Poisson variates.
引用
收藏
页码:403 / 413
页数:11
相关论文
共 24 条
[1]  
AHRENS J, 1973, NONUNIFORM RANDOM NU
[2]   COMPUTER METHODS FOR SAMPLING FROM GAMMA, BETA, POISSON AND BINOMIAL DISTRIBUTIONS [J].
AHRENS, JH ;
DIETER, U .
COMPUTING, 1974, 12 (03) :223-246
[3]  
BARTLETT MS, 1964, BIOMETRIKA, V51, P299, DOI 10.2307/2334136
[4]  
Cinlar E, 2013, INTRO STOCHASTIC PRO
[5]  
Cox D., 1972, STOCHASTIC POINT PRO, P55
[6]  
COX DR, 1966, STATISTICAL ANAL SER
[7]  
GILCHRIST R, 1976, P EUROPEAN C STATIST
[8]   STOCHASTIC POINT PROCESSES - LIMIT THEOREMS [J].
GOLDMAN, JR .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (03) :771-&
[9]   INFINITELY DIVISIBLE POINT PROCESSES IN RN [J].
GOLDMAN, JR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 17 (01) :133-&
[10]  
HOLGATE P, 1972, STOCHASTIC POINT PRO, P122