2 COUPLED MATRICES - EIGENVALUE CORRELATIONS AND SPACING FUNCTIONS

被引:27
作者
MEHTA, ML
SHUKLA, P
机构
[1] CEA, Centre d'Etudes de Saclay, Gif-sur-Yvette
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 23期
关键词
D O I
10.1088/0305-4470/27/23/022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For two n x n Hermitian matrices A and B, with joint probability density proportional to exp[-tr{U(A) + V(B) + 2cAB}], where U and V are polynomials, a method is given to calculate all correlation, cluster and spacing functions of the eigenvalues of either one or both matrices. The method relies on the introduction of two sets of bi-orthogonal polynomials with non-local weights. In a linear chain of coupled matrices, if one looks for the statistical properties of the eigenvalues of only one matrix (two matrices), situated anywhere in the chain, then we can proceed as a one-matrix (two-matrices) problem.
引用
收藏
页码:7793 / 7803
页数:11
相关论文
共 7 条
[1]  
DAUL JM, 1993, NUCL PHYS B, V409, P331
[2]   STATISTICAL THEORY OF ENERGY LEVELS OF COMPLEX SYSTEMS .3. [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (01) :166-&
[3]   PLANAR APPROXIMATION .2. [J].
ITZYKSON, C ;
ZUBER, JB .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (03) :411-421
[4]  
MAHOUX G, 1991, J PHYS I, V1, P1093, DOI 10.1051/jp1:1991193
[5]  
Mehta M.L., 1989, MATRIX THEORY
[6]   A METHOD OF INTEGRATION OVER MATRIX VARIABLES [J].
MEHTA, ML .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (03) :327-340
[7]  
MEHTA ML, 1991, RANDOM MATRICES, pCH3