R-THEORY FOR MARKOV CHAINS ON A GENERAL STATE SPACE .2. R-SUBINVARIANT MEASURES FOR R-TRANSIENT CHAINS

被引:16
作者
TWEEDIE, RL [1 ]
机构
[1] AUSTRALIAN NATL UNIV,DEPT STATISTICS,BOX 4 PO,CANBERRA 2600,ACT,AUSTRALIA
关键词
D O I
10.1214/aop/1176996553
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:865 / 878
页数:14
相关论文
共 13 条
[1]  
DOOB JL, 1959, J MATH MECH, V8, P433
[2]   COMPACTNESS AND SEQUENTIAL COMPACTNESS IN SPACES OF MEASURES [J].
GANSSLER, P .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 17 (02) :124-&
[3]  
Harris T. E, 1957, P AM MATH SOC, V8, P937
[4]  
MOY STC, 1967, J MATH MECH, V16, P1207
[5]  
OREY S, 1971, LECTURE NOTES LIMIT
[6]   EIGENVALUES OF NON-NEGATIVE MATRICES [J].
PRUITT, WE .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (04) :1797-&
[7]  
SIDAK Z, 1967, 4TH T PRAG C INF THE, P547
[8]   COMPACTNESS IN SPACES OF MEASURES [J].
TOPSOE, F .
STUDIA MATHEMATICA, 1970, 36 (03) :195-&
[9]   R-THEORY FOR MARKOV CHAINS ON A GENERAL STATE SPACE .1. SOLIDARITY PROPERTIES AND R-RECURRENT CHAINS [J].
TWEEDIE, RL .
ANNALS OF PROBABILITY, 1974, 2 (05) :840-864
[10]  
Veech W., 1963, P AM MATH SOC, V14, P856