RANDOM-EFFECTS REGRESSION-MODELS FOR CLUSTERED DATA WITH AN EXAMPLE FROM SMOKING PREVENTION RESEARCH

被引:227
作者
HEDEKER, D
GIBBONS, RD
FLAY, BR
机构
[1] UNIV ILLINOIS,PREVENT RES CTR,CHICAGO,IL 60612
[2] UNIV ILLINOIS,DEPT PSYCHIAT,CHICAGO,IL 60612
关键词
D O I
10.1037/0022-006X.62.4.757
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
A random-effects regression model is proposed for analysis of clustered data. Unlike ordinary regression analysis of clustered data, random-effects regression models do not assume that each observation is independent but do assume that data within clusters are dependent to some degree. The degree of this dependency is estimated along with estimates of the usual model parameters, thus adjusting these effects for the dependency resulting from the clustering of the data. A maximum marginal likelihood solution is described, and available statistical software for the model is discussed. An analysis of a dataset in which students are clustered within classrooms and schools is used to illustrate features of random-effects regression analysis, relative to both individual-level analysis that ignores the clustering of the data, and classroom-level analysis that aggregates the individual data.
引用
收藏
页码:757 / 765
页数:9
相关论文
共 42 条
[1]   STATISTICAL MODELING ISSUES IN SCHOOL EFFECTIVENESS STUDIES [J].
AITKIN, M ;
LONGFORD, N ;
PLEWIS, IF ;
WAKEFIELD, WB ;
CHATFIELD, C ;
GOLDSTEIN, H ;
REYNOLDS, D ;
COX, D ;
ECOB, R ;
GRAY, J ;
BELL, JF ;
BURSTEIN, L ;
DAWID, AP ;
HEALY, MJR ;
HUTCHISON, DA ;
KILGORE, S ;
PENDLETON, WW ;
LAIRD, NM ;
LOUIS, TA ;
PRAIS, SJ ;
RUTTER, M ;
MAUGHAN, B ;
OUSTON, J ;
SHARE, DL ;
SMITH, TMF .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1986, 149 :1-43
[2]   AN INVESTIGATION OF THE ROBUSTNESS OF THE T-TEST TO UNIT OF ANALYSIS VIOLATIONS [J].
BLAIR, RC ;
HIGGINS, JJ ;
TOPPING, MEH ;
MORTIMER, AL .
EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 1983, 43 (01) :69-80
[3]  
Bock R. D., 1989, MULTILEVEL ANAL ED D
[4]  
BOCK RD, 1989, MULTILEVEL ANAL ED D, P319
[5]  
BOCK RD, 1983, PRINCIPLES MODERN PS, P103
[6]  
Bryk A.S., 1992, HIERARCHICAL LINEAR
[7]   APPLICATION OF HIERARCHICAL LINEAR-MODELS TO ASSESSING CHANGE [J].
BRYK, AS ;
RAUDENBUSH, SW .
PSYCHOLOGICAL BULLETIN, 1987, 101 (01) :147-158
[8]  
BRYK AS, 1989, INTRO HLM USERS GUID
[9]  
Burstein L., 1980, REV RES ED, V8, P158, DOI [10.3102/0091732X008001158, DOI 10.3102/0091732X008001158]
[10]   RANDOM COEFFICIENT MODELS FOR MULTILEVEL ANALYSIS [J].
DELEEUW, J ;
KREFT, I .
JOURNAL OF EDUCATIONAL STATISTICS, 1986, 11 (01) :57-85