OFFSET APPROXIMATION OF UNIFORM B-SPLINES

被引:41
作者
PHAM, B
机构
[1] Monash Univ
关键词
Computer Aided Design - Mathematical Techniques - Curve Fitting;
D O I
10.1016/0010-4485(88)90005-X
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A simple and fast method is discussed that allows the generation of an offset curve using a set of control knots for a uniform cubic B-spline. As the control knots lie on the curve, it is easier to visualize and modify the curve in the interactive designing stage. An inversion algorithm is applied to find the control vertices which will be used to obtain the B-spline. The offset points of the knots are computed and the corresponding offset B-spline will be generated. Knot addition can also be readily implemented.
引用
收藏
页码:471 / 474
页数:4
相关论文
共 13 条
[1]  
Bezier P, 1972, NUMERICAL CONTROL MA
[2]   COMPUTING OFFSETS OF B-SPLINE CURVES [J].
COQUILLART, S .
COMPUTER-AIDED DESIGN, 1987, 19 (06) :305-309
[3]  
de Boor C., 1972, Journal of Approximation Theory, V6, P50, DOI 10.1016/0021-9045(72)90080-9
[4]  
do Carmo M.P., DIFFERENTIAL GEOMETR
[5]   APPROXIMATION OF NON-DEGENERATE OFFSET SURFACES. [J].
Farouki, R.T. .
Computer Aided Geometric Design, 1986, 3 (01) :15-43
[6]  
Farouki R. T., 1984, Computer-Aided Geometric Design, V2, P257, DOI 10.1016/S0167-8396(85)80002-9
[7]  
Faux ID, 1981, COMPUTATIONAL GEOMET
[8]   OFFSET CURVES IN THE PLANE [J].
HOSCHEK, J .
COMPUTER-AIDED DESIGN, 1985, 17 (02) :77-82
[9]   AN OFFSET SPLINE APPROXIMATION FOR PLANE CUBIC-SPLINES [J].
KLASS, R .
COMPUTER-AIDED DESIGN, 1983, 15 (05) :297-299
[10]  
MORTENSEN ME, 1985, GEOMETRIC MODELLING