DISCRETE SYMMETRY, NONCOMMUTATIVE GEOMETRY AND GRAVITY

被引:1
作者
MOHAMMEDI, N
机构
关键词
D O I
10.1142/S0217732394000691
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider gravity using the formalism of a differential Z2-graded algebra of 2 x 2 matrices whose elements are differential forms on space-time. The connection and the orthonormal frame are extended to incorporate additional scalar and vector fields. The extended torsion-free constraints are solved for a simple case. The resulting action describes a set of scalar fields minimally coupled to Einstein-Hilbert gravity.
引用
收藏
页码:875 / 883
页数:9
相关论文
共 27 条
[1]   NONCOMMUTATIVE GEOMETRY AND HIGGS MECHANISM IN THE STANDARD MODEL [J].
BALAKRISHNA, BS ;
GURSEY, F ;
WALI, KC .
PHYSICS LETTERS B, 1991, 254 (3-4) :430-434
[2]  
CHAMSEDDINE AH, 1992, ETHTH9244 PREPR
[3]  
CHAMSEDDINE AH, 1992, ZUTH301992
[4]   THE GEOMETRICAL SIGNIFICANCE OF CERTAIN HIGGS POTENTIALS - AN APPROACH TO GRAND UNIFICATION [J].
CHAPLINE, G ;
MANTON, NS .
NUCLEAR PHYSICS B, 1981, 184 (03) :391-405
[5]  
Connes A., 1991, Nuclear Physics B, Proceedings Supplements, V18B, P29, DOI 10.1016/0920-5632(91)90120-4
[6]  
CONNES A, 1985, PUBL MATH IHES, V62, P41
[7]  
CONNES A, 1991, IN PRESS CARGESE P
[8]   GENERALIZED GAUGE TRANSFORMATIONS AND HIDDEN SYMMETRY IN THE STANDARD MODEL [J].
COQUEREAUX, R ;
HAUBLING, R ;
PAPADOPOULOS, NA ;
SCHECK, F .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (12) :2809-2824
[9]   NONCOMMUTATIVE GEOMETRY AND GRADED ALGEBRAS IN ELECTROWEAK INTERACTIONS [J].
COQUEREAUX, R ;
ESPOSITOFARESE, G ;
SCHECK, F .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (26) :6555-6593
[10]   CLASSICAL BOSONS IN A NON-COMMUTATIVE GEOMETRY [J].
DUBOISVIOLETTE, M ;
KERNER, R ;
MADORE, J .
CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (11) :1709-1724