NOISE-INDUCED NONEQUILIBRIUM PHASE-TRANSITION

被引:419
作者
VANDENBROECK, C
PARRONDO, JMR
TORAL, R
机构
[1] UNIV COMPLUTENSE MADRID,DEPT FIS APLICADA 1,E-28040 MADRID,SPAIN
[2] UNIV ILLES BALEARS,DEPT FIS,E-07071 PALMA DE MALLORCA,SPAIN
关键词
D O I
10.1103/PhysRevLett.73.3395
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on a simple model of a spatially distributed system which, subject to multiplicative noise, white in space and time, can undergo a nonequilibrium phase transition to a symmetry-breaking state, while no such transition exists in the absence of the noise term. The transition possesses features similar to those observed at second order equilibrium phase transitions: divergence of the correlation length and of the susceptibility, critical slowing down, and scaling properties. Furthermore, the transition is found to be reentrant: The ordered state appears at a critical value of the noise intensity but disappears again at a higher value of the noise strength. © 1994 The American Physical Society.
引用
收藏
页码:3395 / 3398
页数:4
相关论文
共 22 条
[1]  
Abramowitz M.., 1972, HDB MATH FUNCTIONS
[2]   STRUCTURAL PHASE-TRANSITIONS .2. STATIC CRITICAL-BEHAVIOR [J].
BRUCE, AD .
ADVANCES IN PHYSICS, 1980, 29 (01) :111-217
[4]   STATISTICAL-MECHANICS OF A NON-LINEAR STOCHASTIC-MODEL [J].
DESAI, RC ;
ZWANZIG, R .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :1-24
[5]   NUMERICAL-INTEGRATION OF STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
GREINER, A ;
STRITTMATTER, W ;
HONERKAMP, J .
JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (1-2) :95-108
[6]  
HHONGLER MO, 1983, J STAT PHYS, V32, P585
[7]  
Horsthemke W., 1984, NOISE INDUCED TRANSI
[8]   COLLECTIVE RESPONSE IN GLOBALLY COUPLED BISTABLE SYSTEMS [J].
JUNG, P ;
BEHN, U ;
PANTAZELOU, E ;
MOSS, F .
PHYSICAL REVIEW A, 1992, 46 (04) :R1709-R1712
[9]   GLOBALLY COUPLED CHAOS VIOLATES THE LAW OF LARGE NUMBERS BUT NOT THE CENTRAL-LIMIT-THEOREM [J].
KANEKO, K .
PHYSICAL REVIEW LETTERS, 1990, 65 (12) :1391-1394
[10]   MASTER EQUATION DESCRIPTION OF LOCAL FLUCTUATIONS [J].
MALEKMANSOUR, M ;
NICOLIS, G .
JOURNAL OF STATISTICAL PHYSICS, 1975, 13 (03) :197-217