POSITIVE SOLUTIONS OF SUPERLINEAR EIGENVALUE PROBLEMS VIA A MONOTONE ITERATIVE TECHNIQUE

被引:7
作者
LUNING, CD [1 ]
PERRY, WL [1 ]
机构
[1] TEXAS A&M UNIV,DEPT MATH,COLLEGE STN,TX 77843
关键词
D O I
10.1016/0022-0396(79)90071-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The superlinear eigenvalue problems considered in this paper are of the form u′'(x) + λa(x) uv(x) = 0, 0 < x < 1, αu(0) - βu′(0) = 0, γu(1) + δu′(1) = 0 with v > 1. In this paper the existence of a positive solution (λ, u) of the problem is shown by constructing an iterative sequence {λk, uk} of solutions of a related linear eigenvalue problem. It is then shown that λk ↗ λ and uk ↘ u uniformly on [0, 1]. The assumptions are 1. 1. a(x) is positive and in C(0, 1) ∩ L1(0, 1), 2. 2. γβ + γα + αδ ≠ 0, 3. 3. 3.1. a. α, β, γ, δ ≥ 0 or 3.2. b. α > 0, β ≥ 0, δ < 0, 0 < γ < -αδ (α + β) or 3.3. c. β < 0, γ > 0, δ ≥ 0, 0 < α < -γβ (γ + δ). © 1979.
引用
收藏
页码:359 / 367
页数:9
相关论文
共 11 条
[1]  
CALLEGARI A, SIAM J APPL MATH
[2]  
COURANT R, 1953, METHODS MATH PHYSICS, V1
[3]  
Gohberg I., 1969, TRANSLATIONS MATH MO
[4]  
GUSTAFSON GB, 1976, FIXED POINT THEORY I
[5]  
KARLIN S, 1959, J MATH MECH, V8, P907
[6]  
Moore R. A., 1959, T AM MATH SOC, V93, P30
[8]   SUPERLINEAR STURM-LIOUVILLE PROBLEMS [J].
TURNER, REL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1973, 13 (01) :157-171
[9]   NONLINEAR STURM-LIOUVILLE PROBLEMS [J].
TURNER, REL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1971, 10 (01) :141-&
[10]  
WOLKOWISKY JH, 1969, ARCH RATION MECH AN, V35, P299