REALIZATIONS OF CLASSICAL AND QUANTUM-W3 SYMMETRY

被引:76
作者
ROMANS, LJ
机构
[1] Department of Physics, University of Southern California, Los Angeles
关键词
D O I
10.1016/0550-3213(91)90108-A
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider realisations of Zamolodchikov's nonlinear W3 algebra at the classical and quantum level. Recent work has produced gaugings of the classical W3 algebra starting from a theory of n scalar fields phi-i, given the existence of a set of coefficients d(ijk) satisfying a certain algebraic identity. We note that a solution exists for each Jordan algebra determined by a cubic norm form, leading to an infinite family of "generic" models for all n, plus four special cases with n = 5, 8, 14 and 26. Taking free-field ansatze for the spin-two and spin-three currents, we then formulate the conditions for the quantum W3 algebra to be satisfied. We show how the generic classical models may be extended to the quantum case for every n, reducing to the construction of Fateev and Zamolodchikov for n = 2. These models are seen to be examples of a completely general construction, which produces a realisation of W3 from an arbitrary realisation of the Virasoro algebra and an additional scalar field.
引用
收藏
页码:829 / 848
页数:20
相关论文
共 25 条
[1]   EXTENSIONS OF THE VIRASORO ALGEBRA CONSTRUCTED FROM KAC-MOODY ALGEBRAS USING HIGHER-ORDER CASIMIR INVARIANTS [J].
BAIS, FA ;
BOUWKNEGT, P ;
SURRIDGE, M ;
SCHOUTENS, K .
NUCLEAR PHYSICS B, 1988, 304 (02) :348-370
[2]   COSET CONSTRUCTION FOR EXTENDED VIRASORO ALGEBRAS [J].
BAIS, FA ;
BOUWKNEGT, P ;
SURRIDGE, M ;
SCHOUTENS, K .
NUCLEAR PHYSICS B, 1988, 304 (02) :371-391
[3]   THE LARGE-N LIMIT OF EXTENDED CONFORMAL-SYMMETRIES [J].
BAKAS, I .
PHYSICS LETTERS B, 1989, 228 (01) :57-63
[4]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[5]   THE SUPER W-INFINITY ALGEBRA [J].
BERGSHOEFF, E ;
POPE, CN ;
ROMANS, LJ ;
SEZGIN, E ;
SHEN, X .
PHYSICS LETTERS B, 1990, 245 (3-4) :447-452
[6]   W-INFINITY GRAVITY [J].
BERGSHOEFF, E ;
POPE, CN ;
ROMANS, LJ ;
SEZGIN, E ;
SHEN, X ;
STELLE, KS .
PHYSICS LETTERS B, 1990, 243 (04) :350-357
[7]   A REMARK ON THE N-]INFINITY LIMIT OF WN-ALGEBRAS [J].
BILAL, A .
PHYSICS LETTERS B, 1989, 227 (3-4) :406-410
[8]   EXTENDED SUGAWARA CONSTRUCTION FOR THE SUPERALGEBRAS SU(M + 1/N + 1) .2. THE 3RD-ORDER CASIMIR ALGEBRA [J].
BOUWKNEGT, P ;
CERESOLE, A ;
VANNIEUWENHUIZEN, P ;
MCCARTHY, J .
PHYSICAL REVIEW D, 1989, 40 (02) :415-421
[9]   On the remarkable families of isoparametric hypersurfaces in spherical spaces. [J].
Cartan, E .
MATHEMATISCHE ZEITSCHRIFT, 1939, 45 :335-367
[10]   THE EXCEPTIONAL JORDAN ALGEBRA AND THE SUPERSTRING [J].
CORRIGAN, E ;
HOLLOWOOD, TJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 122 (03) :393-410