ANHARMONIC ELASTICITY OF SMECTICS-A AND THE KARDAR-PARISI-ZHANG MODEL

被引:48
作者
GOLUBOVIC, L [1 ]
WANG, ZG [1 ]
机构
[1] W VIRGINIA UNIV,DEPT PHYS,MORGANTOWN,WV 26506
关键词
D O I
10.1103/PhysRevLett.69.2535
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We relate anharmonic equilibrium thermal fluctuations of smectics A to fluctuations of the Kardar-Parisi-Zhang (KPZ) dynamical model for a growing interface. The KPZ model in 1+1 dimensions is one to one related to a 2D smectic elastic model whose scaling behavior is then obtained exactly. The KPZ model in 2+1 dimensions maps into an elastic critical point of 3D smectics A with broken inversion symmetry (head-to-tail packing of layers). We discuss the elasticity and fluctuations of these novel smectic-A phases.
引用
收藏
页码:2535 / 2538
页数:4
相关论文
共 34 条
[1]   NUMERICAL-SOLUTION OF A CONTINUUM EQUATION FOR INTERFACE GROWTH IN 2+1 DIMENSIONS [J].
AMAR, JG ;
FAMILY, F .
PHYSICAL REVIEW A, 1990, 41 (06) :3399-3402
[2]   FLUCTUATIONS AND LOWER CRITICAL DIMENSIONS OF CRYSTALLINE MEMBRANES [J].
ARONOVITZ, J ;
GOLUBOVIC, L ;
LUBENSKY, TC .
JOURNAL DE PHYSIQUE, 1989, 50 (06) :609-631
[3]   FLUCTUATIONS OF SOLID MEMBRANES [J].
ARONOVITZ, JA ;
LUBENSKY, TC .
PHYSICAL REVIEW LETTERS, 1988, 60 (25) :2634-2637
[4]   FLUCTUATIONS AND LONG-RANGE ORDER IN FINITE-TEMPERATURE PION CONDENSATES [J].
BAYM, G ;
FRIMAN, BL ;
GRINSTEIN, G .
NUCLEAR PHYSICS B, 1982, 210 (02) :193-209
[5]  
Blinc R., 1974, SOFT MODES FERROELEC
[6]  
CAILLE A, 1972, CR ACAD SCI B PHYS, V274, P891
[7]   DYNAMICS AS A SUBSTITUTE FOR REPLICAS IN SYSTEMS WITH QUENCHED RANDOM IMPURITIES [J].
DEDOMINICIS, C .
PHYSICAL REVIEW B, 1978, 18 (09) :4913-4919
[8]  
Family F., 1991, DYNAMICS FRACTAL SUR
[9]  
FOREST BM, 1990, PHYS REV LETT, V64, P1405
[10]  
FOSTER D, 1977, PHYS REV A, V16, P732