THE WAVELET TRANSFORM OF STOCHASTIC-PROCESSES WITH STATIONARY INCREMENTS AND ITS APPLICATION TO FRACTIONAL BROWNIAN-MOTION

被引:87
作者
MASRY, E
机构
[1] Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA
关键词
WAVELET TRANSFORM; PROCESSES WITH STATIONARY INCREMENTS; FRACTIONAL BROWNIAN MOTION;
D O I
10.1109/18.179371
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The wavelet transform of random processes with wide-sense stationary increments is shown to be a wide-sense stationary process whose correlation function and spectral distribution are determined. The second-order properties of the coefficients in the wavelet orthonormal series expansion of such processes is obtained. Applications to the spectral analysis and to the synthesis of fractional Brownian motion are given.
引用
收藏
页码:260 / 264
页数:5
相关论文
共 10 条
[1]  
CAMBANIS S, UNPUB WAVELET APPROX
[2]   THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION AND SIGNAL ANALYSIS [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) :961-1005
[3]  
Doob J. L., 1953, STOCHASTIC PROCESSES
[4]  
FANDRIN P, 1992, IEEE T INFORM THEO 2, V8, P910
[5]   DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE [J].
GROSSMANN, A ;
MORLET, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (04) :723-736
[6]  
Kronland-Martinet R., 1987, INT J PATTERN RECOGN, V1, P97, DOI 10.1142/S0218001487000205
[8]   FLICKER NOISE AND THE ESTIMATION OF THE ALLAN VARIANCE [J].
MASRY, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (04) :1173-1177
[9]   CORRELATION STRUCTURE OF THE DISCRETE WAVELET COEFFICIENTS OF FRACTIONAL BROWNIAN-MOTION [J].
TEWFIK, AH ;
KIM, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :904-909
[10]   A KARHUNEN-LOEVE-LIKE EXPANSION FOR 1/F PROCESSES VIA WAVELETS [J].
WORNELL, GW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (04) :859-861