USE OF LOCALLY DENSE BASIS-SETS FOR NUCLEAR-MAGNETIC-RESONANCE SHIELDING CALCULATIONS

被引:99
作者
CHESNUT, DB
RUSILOSKI, BE
MOORE, KD
EGOLF, DA
机构
[1] P.M. Gross Chemical Laboratory, Duke University, Durham, North Carolina
[2] North Carolina Supercomputing Center, North Carolina, 27709, Research Triangle Park
[3] Department of Physics, Duke University, Durham, North Carolina
关键词
D O I
10.1002/jcc.540141113
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The locally dense basis set approach to the calculation of nuclear magnetic resonance shieldings is one in which a sufficiently large or dense set of basis functions is used for an atom or molecular fragment containing the resonant nucleus or nuclei of interest and fewer or attenuated sets of basis functions employed elsewhere. Provided the dense set is of sufficient size, this approach is capable of determining chemical shieldings nearly as well as a calculation with a balanced basis set of quality equal to the locally dense set, but with considerable savings of CPU time. Detailed comparisons are provided of locally dense and balanced calculations in the gauge including atomic orbital (GIAO) method for the individual principal values, the isotropic shieldings, and the tensor orientations for hydrogen, carbon, nitrogen, oxygen, fluorine, and phosphorus nuclei. It is seen that chemical functional groups can often define the appropriate molecular fragment to be taken locally dense. While the present test cases are for the most part small molecules, the value of the method is that it will allow calculations on systems that would otherwise presently be computationally expensive or inaccessible. (C) 1993 by John Wiley & Sons, Inc.
引用
收藏
页码:1364 / 1375
页数:12
相关论文
共 36 条