In order to evaluate the dependence of the embryo on new mRNA synthesis during the period leading to blastulation, quantitative and qualitative aspects of protein synthesis in developing mouse morulae were investigated using α-amanitin, an inhibitor of RNA polymerase II. Only 1 of 423 early morulae cultured for 27 hr in the presence of 11 μg/ml α-amanitin cavitated, although most progressed as far as fully compacted morulae. About two-thirds of the untreated embryos cavitated during the same period. Incorporation of [35S]methionine into protein was measured at 3- or 4-hr intervals over a 24-hr period and showed a two- to fivefold increase in control embryos. This increase was blocked in the α-amanitin-treated group although initial levels of incorporation were maintained. Total uptake of the amino acid appeared to be unaffected by the inhibitor. RNA synthesis, as measured by [3H]uridine incorporation over the same period, was reduced by between 5 and 52%, and the preblastulation surge in RNA synthesis was also blocked by α-amanitin. Two-dimensional polyacrylamide gel electrophoresis of labeled polypeptides synthesized by the embryos after 24-hr incubation in the presence or absence of the inhibitor revealed three distinct classes of polypeptide. The majority of polypeptides continued to be synthesized in the presence of α-amanitin whereas a small number of polypeptides, the synthesis of which would normally have increased during the development of the morula to the blastocyst, were prevented from doing so. A few polypeptides which normally cease to be synthesized over this period continued to be synthesized in the presence of α-amanitin. It is concluded that, while most of the proteins detectable at the morula stage are synthesized on mRNA templates of relatively long translational life, the general surge in protein synthesis, including the increased synthesis of a few species of polypeptide, are dependent on continuous translational activity. © 1979.