PERIODIC AND QUASI-PERIODIC SOLUTIONS OF NONLINEAR-WAVE EQUATIONS VIA KAM THEORY

被引:373
作者
WAYNE, CE
机构
[1] Department of Mathematics, The Pennsylvania State University, University Park, 16802, PA
关键词
D O I
10.1007/BF02104499
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper the nonlinear wave equation {Mathematical expression} is studied. It is shown that for a large class of potentials, v(x), one can use KAM methods to construct periodic and quasi-periodic solutions (in time) for this equation. © 1990 Springer-Verlag.
引用
收藏
页码:479 / 528
页数:50
相关论文
共 22 条
[1]   PERIODIC-SOLUTIONS OF SOME INFINITE-DIMENSIONAL HAMILTONIAN-SYSTEMS ASSOCIATED WITH NON-LINEAR PARTIAL DIFFERENCE-EQUATIONS .1. [J].
ALBANESE, C ;
FROHLICH, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 116 (03) :475-502
[2]   PERIODIC-SOLUTIONS OF SOME INFINITE-DIMENSIONAL HAMILTONIAN-SYSTEMS ASSOCIATED WITH NON-LINEAR PARTIAL DIFFERENCE-EQUATIONS .2. [J].
ALBANESE, C ;
FROHLICH, J ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 119 (04) :677-699
[5]   ERROR ESTIMATES FOR FINITE-ELEMENT SOLUTION OF VARIATIONAL INEQUALITIES [J].
BREZZI, F ;
HAGER, WW ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1978, 31 (01) :1-16
[6]   SMOOTH PRIME INTEGRALS FOR QUASI-INTEGRABLE HAMILTONIAN-SYSTEMS [J].
CHIERCHIA, L ;
GALLAVOTTI, G .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1982, 67 (02) :277-295
[7]  
Eliasson LH., 1988, ANN SC NORM SUPER S, V15, P115
[8]   LOCALIZATION IN DISORDERED, NONLINEAR DYNAMIC-SYSTEMS [J].
FROHLICH, J ;
SPENCER, T ;
WAYNE, CE .
JOURNAL OF STATISTICAL PHYSICS, 1986, 42 (3-4) :247-274
[9]  
GELFAND I, 1955, AM MATH SOC T, V1, P263
[10]   CONSERVATION OF HYPERBOLIC INVARIANT TORI FOR HAMILTONIAN SYSTEMS [J].
GRAFF, SM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 15 (01) :1-69