BIAS-REMEDY LEAST MEAN-SQUARE EQUATION ERROR ALGORITHM FOR IIR PARAMETER RECURSIVE ESTIMATION

被引:25
作者
LIN, JN
UNBEHAUEN, R
机构
[1] Lehrstuhl für Allgemeine und Theoretische Elektrotechnik, Universitat Erlangen-Nurnberg, Erlangen
关键词
D O I
10.1109/78.157182
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the area of infinite impulse response (IIR) system identification and adaptive filtering the equation error algorithms used for recursive estimation of the plant parameters are well known for their good convergence properties. However, these algorithms give biased parameter estimates in the presence of measurement noise. In this paper, a new algorithm is proposed on the basis of the least mean square equation error (LMSEE) algorithm, which manages to remedy the bias while retaining the parameter stability. The so-called "bias-remedy least mean square equation error" (denoted as BRLE) algorithm has a simple form. The compatibility of the concept of "bias remedy" with the stability requirement for the convergence procedure is supported by a practically meaningful theorem. The behavior of the BRLE has been examined extensively in a series of computer simulations.
引用
收藏
页码:62 / 69
页数:8
相关论文
共 20 条
[1]   SYSTEM IDENTIFICATION - SURVEY [J].
ASTROM, KJ ;
EYKHOFF, P .
AUTOMATICA, 1971, 7 (02) :123-+
[2]  
FAN H, 1986, IEEE T CIRCUITS SYST, V33, P939
[3]   A VARIABLE STEP (VS) ADAPTIVE FILTER ALGORITHM [J].
HARRIS, RW ;
CHABRIES, DM ;
BISHOP, FA .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1986, 34 (02) :309-316
[4]   ADAPTIVE IIR FILTERING - CURRENT RESULTS AND OPEN ISSUES [J].
JOHNSON, CR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1984, 30 (02) :237-250
[5]  
JOHNSON CR, 1977, P IEEE, V65, P1399, DOI 10.1109/PROC.1977.10722
[6]  
KENNEY JB, 1989, 1989 P INT C AC SPEE, P2081
[7]  
KENNEY JB, 1988, 1988 P INT C AC SPEE, P1561
[8]   SHARF - AN ALGORITHM FOR ADAPTING IIR DIGITAL-FILTERS [J].
LARIMORE, MG ;
TREICHLER, JR ;
JOHNSON, CR .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1980, 28 (04) :428-440
[9]  
Ludyk G., 1985, STABILITY TIME VARIA
[10]  
MARSHALL OF, 1988, 1988 P INT C AC SPEE, P1377