RIEMANNIAN CURVATURE AND THE CLASSIFICATION OF THE RIEMANN AND RICCI TENSORS IN SPACE-TIME

被引:13
作者
CORMACK, WJ
HALL, GS
机构
[1] Department of Mathematics, University of Aberdeen, Aberdeen
关键词
D O I
10.1007/BF00671764
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Some theorems proved by Thorpe concerning the connection between the critical point structure of the Riemannian (sectional) curvature function and the Petrov classification are extended. A similar function is defined whose critical point structure is connected with the algebraic classification of the Ricci tensor. © 1979 Plenum Publishing Corporation.
引用
收藏
页码:279 / 289
页数:11
相关论文
共 12 条
[1]  
Bel L., 1962, CAHIERS PHYS, V16, P59
[2]  
Brickell F, 1970, DIFFERENTIABLE MANIF
[3]   INVARIANT 2-SPACES AND CANONICAL FORMS FOR THE RICCI TENSOR IN GENERAL RELATIVITY [J].
CORMACK, WJ ;
HALL, GS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (01) :55-62
[4]  
EHLERS J, 1962, GRAVITATION
[5]  
Eisenhart L.P, 1966, RIEMANNIAN GEOMETRY
[6]   RIEMANNIAN CURVATURE AND PETROV CLASSIFICATION [J].
HALL, GS .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1978, 33 (05) :559-562
[7]   CLASSIFICATION OF RICCI TENSOR IN GENERAL RELATIVITY THEORY [J].
HALL, GS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (04) :541-545
[8]  
Milnor J., 1963, MORSE THEORY
[9]  
Petrov A.Z., 1969, EINSTEIN SPACES
[10]  
Plebanski J., 1964, ACTA PHYS POL, V26, P963