INVERSE PROBLEMS ON FERMI SYSTEMS AND IONIC-CRYSTALS

被引:18
作者
CHEN, NX [1 ]
REN, GB [1 ]
机构
[1] CHINA CTR ADV SCI & TECHNOL,BEIJING 100080,PEOPLES R CHINA
基金
中国国家自然科学基金;
关键词
D O I
10.1016/0375-9601(91)90658-U
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An inverse theorem on an infinite sum of alternating functions is first presented in this paper. The pairwise interaction between ions in a linear ionic chain is first solved by this theorem. The result provides an interesting check on evaluations of the Madelung constant. A new result on a Fermi system is also presented as another example. Of more importance, this work shows the potential application of number theory to physical problems.
引用
收藏
页码:319 / 324
页数:6
相关论文
共 10 条
[1]   RAMANUJAN SUMS AND THE AVERAGE VALUE OF ARITHMETIC FUNCTIONS [J].
BELLMAN, R .
DUKE MATHEMATICAL JOURNAL, 1950, 17 (02) :159-168
[2]  
Bellman R., 1966, NUMERICAL INVERSION, DOI DOI 10.2307/2004790
[3]   MODIFIED MOBIUS INVERSE FORMULA AND ITS APPLICATIONS IN PHYSICS [J].
CHEN, NX .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1193-1195
[4]   THEORETICAL INVESTIGATION ON INVERSION FOR THE PHONON DENSITY OF STATES [J].
CHEN, NX ;
CHEN, Y ;
LI, GY .
PHYSICS LETTERS A, 1990, 149 (7-8) :357-364
[5]   SOLUTION OF INVERSION OF EWALD SUM FOR EFFECTIVE ION ELECTRON INTERACTION [J].
CHEN, NX .
PHYSICS LETTERS A, 1991, 153 (8-9) :481-482
[6]  
CHEN NX, IN PRESS MOBIUS INVE
[7]  
KITTEL C, 1976, INTRO SOLID STATE PH, pCH3
[8]   MOBIUS AND PROBLEMS OF INVERSION [J].
MADDOX, J .
NATURE, 1990, 344 (6265) :377-377
[9]   GENERALIZED MOBIUS TRANSFORMS FOR INVERSE PROBLEMS [J].
REN, SY ;
DOW, JD .
PHYSICS LETTERS A, 1991, 154 (5-6) :215-216
[10]  
Wright E., 1979, INTRO THEORY NUMBERS