ON GROBNER BASES UNDER SPECIALIZATION

被引:17
作者
BECKER, T [1 ]
机构
[1] UNIV PASSAU, FAK MATH & INFORMAT, D-94030 PASSAU, GERMANY
关键词
POLYNOMIAL IDEALS; GROBNER BASES; D-GROBNER BASES;
D O I
10.1007/BF01196621
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We extend a result of Gianni and Kalkbrener concerning the stability of the Grobner basis property under specializations. In particular, we prove that the Grobner basis property is preserved if one specializes variables from bottom up in a Grobner basis of a zero-dimensional radical ideal w.r.t. a lexicographical term order. The proof makes use of a connection between Grobner bases and D-Grobner bases which is proved separately. Computational aspects of this connection are discussed briefly.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 16 条
[1]   TRANSITIVITY FOR WEAK AND STRONG GROBNER BASES [J].
ADAMS, WW ;
BOYLE, A ;
LOUSTAUNAU, P .
JOURNAL OF SYMBOLIC COMPUTATION, 1993, 15 (01) :49-65
[2]  
Becker T., 1993, GROBNER BASES COMPUT
[3]  
BUCHBERGER B, 1970, GLEICHUNGSSYSTEMS AE, V4, P374
[4]   GROBNER BASES AND PRIMARY DECOMPOSITION OF POLYNOMIAL IDEALS [J].
GIANNI, P ;
TRAGER, B ;
ZACHARIAS, G .
JOURNAL OF SYMBOLIC COMPUTATION, 1988, 6 (2-3) :149-167
[5]  
GIANNI P, 1987, LNCS, V378, P293
[6]  
Kalkbrenner M, 1987, LECT NOTES COMPUTER, V378, P282
[7]  
KANDRIRODY A, 1984, LECT NOTES COMPUT SC, V174, P195
[8]   COMPUTING A GROBNER BASIS OF A POLYNOMIAL IDEAL OVER A EUCLIDEAN DOMAIN [J].
KANDRIRODY, A ;
KAPUR, D .
JOURNAL OF SYMBOLIC COMPUTATION, 1988, 6 (01) :37-57
[9]  
LAUER M, 1976, 1976 P ACM S SYMB AL, P339
[10]  
MARK W, 1992, GROBNERBASEN HAUPTID