MAXIMUM SUSTAINABLE-YIELD OF A NONLINEAR POPULATION-MODEL WITH CONTINUOUS AGE STRUCTURE

被引:19
作者
MURPHY, LF [1 ]
SMITH, SJ [1 ]
机构
[1] NE MISSOURI STATE UNIV,DIV MATH & COMP SCI,KIRKSVILLE,MO 63501
关键词
D O I
10.1016/0025-5564(91)90064-P
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Here we investigate the maximum sustainable yield problem for an age-structured population whose dynamics are density dependent. We use the nonlinear version of the McKendrick model of population dynamics that was introduced by Gurtin and MacCamy and do not constrain the magnitude of the harvesting term. We show that this problem has an optimal solution and that the optimum is attainable by a bimodal harvesting policy. This result is consistent with the results obtained by Grey for the nonlinear Leslie model.
引用
收藏
页码:259 / 270
页数:12
相关论文
共 13 条
[1]  
Bazaraa M. S., 1979, NONLINEAR PROGRAMMIN
[2]   OPTIMUM AGE SPECIFIC HARVESTING OF A POPULATION [J].
BEDDINGTON, JR ;
TAYLOR, DB .
BIOMETRICS, 1973, 29 (04) :801-809
[4]   HARVESTING UNDER DENSITY-DEPENDENT MORTALITY AND FECUNDITY [J].
GREY, DR .
JOURNAL OF MATHEMATICAL BIOLOGY, 1988, 26 (02) :193-197
[5]  
GURTIN ME, 1974, ARCH RATION MECH AN, V54, P281
[6]  
Kolmogorov, 1970, INTRO REAL ANAL
[7]  
Luenberger D. G., 1973, INTRO LINEAR NONLINE
[8]  
MKendrick A. G., 1925, P EDINBURGH MATH SOC, V44, P98, DOI DOI 10.1017/S0013091500034428
[9]  
MURPHY LF, IN PRESS J MATH BIOL
[10]   OPTIMUM AGE-SPECIFIC HARVESTING IN A NON-LINEAR POPULATION-MODEL [J].
REED, WJ .
BIOMETRICS, 1980, 36 (04) :579-593