REAL FORMS OF UQ(G)

被引:32
作者
TWIETMEYER, E
机构
[1] Department of Mathematics, Harvard University, Cambridge, 02138, MA
关键词
D O I
10.1007/BF00430002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter we consider the real forms of quantum groups associated to generalized Cartan matrices. There are two main results. The first is a description of the Hopf algebra automorphisms and of the Hopf *-algebra structures of the quantum group. This immediately yields a precise description of the real forms. The second result establishes a correspondence of these real forms when the quantum group is associated to a complex simple Lie algebra with objects associated to the real forms of the classical object.
引用
收藏
页码:49 / 58
页数:10
相关论文
共 12 条
[1]  
ADAMS J, 1991, LANGLANDS CLASSIFICA
[2]  
DECONCINI C, 1990, PROG MATH, V92, P471
[3]  
DECONCINI D, 1991, RIMS792
[4]  
Drinfeld V. G., 1986, P ICM BERKELEY, V1, P789
[5]  
Humphreys J. E., 1972, INTRO LIE ALGEBRAS R, V9
[6]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69
[7]   ALGEBRAS OF FUNCTIONS ON COMPACT QUANTUM GROUPS, SCHUBERT CELLS AND QUANTUM TORI [J].
LEVENDORSKII, S ;
SOIBELMAN, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 139 (01) :141-170
[8]  
Lusztig G., 1989, CONT MATH, P59
[9]  
LYUBASHENKO V, 1991, KPI2606 DEP APPL MAT
[10]   UNITARY REPRESENTATIONS OF THE QUANTUM GROUP SUQ(1,1) - STRUCTURE OF THE DUAL-SPACE OF UQ(SL(2)) [J].
MASUDA, TS ;
MIMACHI, KS ;
NAKAGAMI, YH ;
NOUMI, MT ;
SABURI, YT ;
UENO, KM .
LETTERS IN MATHEMATICAL PHYSICS, 1990, 19 (03) :187-194