THE DOMAIN DERIVATIVE AND 2 APPLICATIONS IN INVERSE SCATTERING-THEORY

被引:184
作者
KIRSCH, A
机构
[1] Inst. fur Angewandte Math., Erlangen-Nurnberg Univ.
关键词
D O I
10.1088/0266-5611/9/1/005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first part of this paper recalls the notion of the domain derivative of a functional. The existence and a characterization of the domain derivative of the far-field pattern for a scattering problem with Dirichlet boundary condition is proved. The second part uses this characterization for an efficient implementation of a Gauss-Newton method for solving the inverse obstacle scattering problem. The third part deals with the sensitivity of the linearized obstacle problem.
引用
收藏
页码:81 / 96
页数:16
相关论文
共 25 条
[1]  
COLTON D, 1986, SIAM J APPL MATH, V46, P506, DOI 10.1137/0146034
[2]   UNIQUENESS THEOREMS FOR THE INVERSE PROBLEM OF ACOUSTIC SCATTERING [J].
COLTON, D ;
SLEEMAN, BD .
IMA JOURNAL OF APPLIED MATHEMATICS, 1983, 31 (03) :253-259
[3]   THE NUMERICAL-SOLUTION OF THE 3-DIMENSIONAL INVERSE SCATTERING PROBLEM FOR TIME HARMONIC ACOUSTIC-WAVES [J].
COLTON, D ;
MONK, P .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (03) :278-291
[4]   THE INVERSE SCATTERING PROBLEM FOR TIME-HARMONIC ACOUSTIC-WAVES [J].
COLTON, D .
SIAM REVIEW, 1984, 26 (03) :323-350
[5]   A NOVEL METHOD FOR SOLVING THE INVERSE SCATTERING PROBLEM FOR TIME-HARMONIC ACOUSTIC-WAVES IN THE RESONANCE REGION [J].
COLTON, D ;
MONK, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1985, 45 (06) :1039-1053
[6]  
Colton D., 1983, INTEGRAL EQUATION ME
[7]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF
[8]  
Groetsch C. W., 1984, PITMAN RES NOTES MAT, V105
[9]   2-DIMENSIONAL INVERSE SCATTERING PROBLEM [J].
IMBRIALE, WA ;
MITTRA, R .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1970, AP18 (05) :633-&
[10]   STABILITY ESTIMATES FOR OBSTACLES IN INVERSE SCATTERING [J].
ISAKOV, V .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 42 (01) :79-88