ALGORITHMS FOR SPECIAL CASES OF RECTILINEAR STEINER TREES .1. POINTS ON THE BOUNDARY OF A RECTILINEAR RECTANGLE

被引:10
作者
AGARWAL, PK [1 ]
SHING, MT [1 ]
机构
[1] USN,POSTGRAD SCH,DEPT COMP SCI,MONTEREY,CA 93943
关键词
D O I
10.1002/net.3230200407
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The general rectilinear Steiner tree problem has been proved to be NP‐complete. In this paper, we consider a special case in which the points lie on the boundary of a rectilinear rectangle and give an O(n) algorithm to construct a minimum rectilinear Steiner tree for such points. Copyright © 1990 Wiley Periodicals, Inc., A Wiley Company
引用
收藏
页码:453 / 485
页数:33
相关论文
共 10 条
[1]  
AGARWAL PK, 1986, ALGORITHMS SPECIAL C, V1
[2]   RECTILINEAR STEINER TREES - EFFICIENT SPECIAL-CASE ALGORITHMS [J].
AHO, AV ;
GAREY, MR ;
HWANG, FK .
NETWORKS, 1977, 7 (01) :37-58
[3]  
COHOON JP, 1988, 1988 P IEEE CAD C, P402
[4]   RECTILINEAR STEINER TREE PROBLEM IS NP-COMPLETE [J].
GAREY, MR ;
JOHNSON, DS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) :826-834
[5]   O(N LOG N) ALGORITHM FOR SUBOPTIMAL RECTILINEAR STEINER TREES [J].
HWANG, FK .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1979, 26 (01) :75-77
[6]   STEINER MINIMAL TREES WITH RECTILINEAR DISTANCE [J].
HWANG, FK .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 30 (01) :104-115
[7]  
HWANG FK, 1978, DESIGN AUTOMATION FA, V2, P303
[8]  
PROVAN JS, 1988, NETWORKS, V18, P55, DOI 10.1002/net.3230180108
[9]   AN 0 (N LOG N) HEURISTIC ALGORITHM FOR THE RECTILINEAR STEINER MINIMAL TREE PROBLEM [J].
SMITH, JM ;
LEE, DT ;
LIEBMAN, JS .
ENGINEERING OPTIMIZATION, 1980, 4 (04) :179-192
[10]   STEINER PROBLEM IN NETWORKS - A SURVEY [J].
WINTER, P .
NETWORKS, 1987, 17 (02) :129-167