TRAVELING WAVES AND FINITE PROPAGATION IN A REACTION-DIFFUSION EQUATION

被引:133
作者
DEPABLO, A
VAZQUEZ, JL
机构
[1] Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid
关键词
D O I
10.1016/0022-0396(91)90021-Z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of travelling wave solutions and the property of finite propagation for the reaction-diffusion equation ut = (um)xx + λun, (x, t) ε{lunate} R × (0, ∞) with m > 1, λ > 0, n ε{lunate} R, and u = u(x, t) ≥ 0. We show that travelling waves exist globally only if m + n = 2 and only for velocities |c| ≥ c* = 2 √λm. In the study of propagation we must take into account that solutions of the Cauchy problem can be nonunique for n < 1. Finite propagation occurs for minimal solutions if and only if m + n ≥ 2, and there exists a minimal velocity c* > 0 for m + n = 2. Maximal solutions propagate instantly to the whole space if n < 1. © 1991.
引用
收藏
页码:19 / 61
页数:43
相关论文
共 28 条
[1]  
[Anonymous], 1986, ANN FAC TOULOUSE MAT, DOI DOI 10.5802/AFST.637
[2]   STABILIZATION OF SOLUTIONS OF A DEGENERATE NON-LINEAR DIFFUSION PROBLEM [J].
ARONSON, D ;
CRANDALL, MG ;
PELETIER, LA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (10) :1001-1022
[3]  
ARONSON DG, 1983, T AM MATH SOC, V280, P351, DOI 10.2307/1999618
[4]  
ARONSON DG, 1980, P ADV SEMINAR DYNAMI
[5]  
ARONSON DG, 1986, LECTURE NOTES MATH
[6]  
Aronson DG, 1975, PARTIAL DIFFERENTIAL, DOI DOI 10.1007/BFB0070595
[7]   SOLUTIONS OF THE POROUS-MEDIUM EQUATION IN RN UNDER OPTIMAL CONDITIONS ON INITIAL VALUES [J].
BENILAN, P ;
CRANDALL, MG ;
PIERRE, M .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (01) :51-87
[8]  
BREZIS H, 1979, J MATH PURE APPL, V58, P153
[9]   THE BALANCE BETWEEN STRONG REACTION AND SLOW DIFFUSION [J].
DEPABLO, A ;
VAZQUEZ, JL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1990, 15 (02) :159-183
[10]   CONTINUITY OF WEAK SOLUTIONS TO A GENERAL POROUS-MEDIUM EQUATION [J].
DIBENEDETTO, E .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (01) :83-118